Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Symmetry-protected topological (SPT) phases can be thought of as generalizations of topological insulators. Just as topological insulators have robust boundary modes protected by time reversal and charge conservation symmetry, SPT phases have boundary modes protected by more general symmetries. In this talk, I will describe a method for analyzing 2D and 3D SPT phases using braiding statistics. More specifically, I will show that 2D and 3D SPT phases can be characterized by gauging their symmetries and studying the braiding statistics of their gauge flux excitations.
We present a formal logic modeling some aspects of the behavior of the quantum measurement process, and study some properties of the models of this logic, from which we deduce some characteristics that any such model should verify. In the case of a Hilbert space of dimension at least 3, we then show that no model can lead to the prediction with certainty of more than one atomic outcome. Moreover, if the Hilbert space is finite dimensional, we can precisely describe the structure of the predictions of any model of our logic.
In this talk I will discuss the non-equilibrium response of Chern insulators [1]. Focusing on the Haldane model, we study the dynamics induced by quantum quenches between topological and non-topological phases. A notable feature is that the Chern number, calculated for an infinite system, is unchanged under the dynamics following such a quench. However, in finite geometries, the initial and final Hamiltonians are distinguished by the presence or absence of edge modes. We study the edge excitations and describe their impact on the experimentally-observable edge currents and magnetization.
As an experimentalist involved in the search for physics beyond the Standard Model at the LHC, one must choose carefully which signatures to pursue. While theoretical guidance in identifying well motivated gaps in the coverage of “natural” BSM extensions is an important ingredient in this choice, unexplored territory is often unexplored for a reason, namely that there are likely non-trivial (“tricky”) experimental difficulties. One must thus consider the risk (time) vs. reward (discovery) in deciding what to pursue.