Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday Jun 07, 2017
Speaker(s): 

Yb2Ti2O7 is a geometrically frustrated magnet that proposed as a quantum spin liquid (QSL) candidate. This would have an emergent U(1) gauge structure, support emergent quasiparticles and a continuum of gapless spin excitations. A cubic power law dependence is expected in the specific heat down to zero temperature. [1,2] Identifying a power law is hindered by the presence of a sharp transition at 0.26K and a Schottky anomaly due to nuclear hyperfine interactions below 0.1K.

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological order (SPTO) for measurement-based quantum computation. We show that, in spatial dimension one, if an SPTO phase supports quantum wire, then, subject to an additional symmetry condition that is satisfied in all cases so far investigated, it can also be used for quantum computation. Joint work with Dongsheng Wang, Abhishodh Prakash, Tzu-Chieh Wei and David Stephen; See arXiv:1609.07549v1

 

Wednesday Jun 07, 2017
Speaker(s): 

The erbium and ytterbium rare earth pyrochlores exhibit local XY spin anisotropy. Experimental and theoretical investigations of XY pyrochlores have revealed a strong propensity for quantum magnetic phenomena, such as order-by-disorder and the quantum spin ice state. We have conducted a systematic investigation of the family of XY pyrochlores, Yb2B2O7 and Er2B2O7, spanning many non-magnetic B site cations (B = Ge, Ti, Pt, and Sn).

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

High quality single crystals of Yb2Ti2O7 synthesized using a traveling solvent floating zone method enable experiments that explore the anisotropic temperature-field phase diagram of this quantum spin ice candidate. We have examined the H//(111) orientation, which is interesting because a phase transition that breaks three fold rotation symmetry is possible in the presence of a magnetic field.

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

The pyrochlore magnet Yb2Ti2O7 has the remarkable property that it orders magnetically, but has no propagating magnons over wide regions of reciprocal space. Using inelastic neutron scattering we observe that at high magnetic fields, in addition to dispersive magnons there is also a two-magnon continuum, which grows in intensity upon reducing field, overlaps with one-magnon states at intermediate fields leading to strong dispersion renormalizations and magnon decays.

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

Harboring interpenetrating lattices of corner-sharing tetrahedra, materials with the pyrochlore structure type dominate exploration of the physics of quantum spin ices. Recent synthetic advances in the control of point defects, such as in Yb2Ti2O7 and Pr2Zr2O, have demonstrated that even sub-percent changes in the type and/or number of defects radically modulates the low temperature physics of these materials.

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

We aim to provide a concise review on theoretical background on emergent quantum electrodynamics in pyrochlore quantum spin ice. We first introduce elementary excitations in quantum spin ice using a simple model and then extend the discussion to more realistic systems. Implications to experiments are also discussed.

Scientific Areas: 

 

Wednesday Jun 07, 2017
Speaker(s): 

In this tutorial, we will review the microscopic aspects of rare-earth magnets relevant for quantum spin ice. We first discuss the single-ion properties of the variety of rare-earth atoms that appear in quantum spin ice candidate materials. Second, we consider the origin of the two-ion exchange interactions, including electric and magnetic multipolar interactions, super-exchange and virtual crystal field mediated interactions.

Scientific Areas: 

 

Thursday Jun 01, 2017
Speaker(s): 

In this work we consider a recent proposal in which gravitational interactions are mediated via the exchange of classical information and apply it to a quantized Friedman-Robertson-Walker (FRW) universe with the assumption that any test particles must feel a classical metric. We show that such a model results in decoherence in the FRW state that manifests itself as a dark energy fluid that fills the spacetime.

Collection/Series: 

Pages

Next Public Lecture

Check back for details on the next lecture in Perimeter's Public Lectures Series