Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We investigate far from equilibrium energy transport in strongly coupled quantum critical systems. Combining results from gauge-gravity duality, relativistic hydrodynamics, and quantum field theory, we argue that long-time energy transport after a local thermal quench occurs via a universal steady-state for any spatial dimensionality. This is described by a boosted thermal state. We determine the transport properties of this emergent steady state, including the average energy flow and its long-time fluctuations.
The weak gravity conjecture (WGC) asserts a powerful consistency condition on gauge theories coupled to quantum gravity: an Abelian, long-range force requires a state of charge q and mass m such that q > m/mPl. Failure of this condition implies the existence of stable black hole remnants and is in tension with no-hair theorems. In this paper, we argue that the WGC creates a non- perturbative obstruction to naturalness, which is the notion that dimensionless coefficients should take on O(1) values in the absence of enhanced symmetry.
One new frontier in cosmology is the frequency spectrum of the CMB. Future instruments may be precise enough to measure deviations from the nearly-perfect blackbody, measuring a chemical potential and thus probing energy injection at extremely high redshift. I will discuss ($\mu$ and $y$-type) CMB spectral distortions from the dissipation of entropy (isocurvature)-sourced acoustic modes. I will then discuss how a high-energy phase transition could also source such distortions.