Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
AdS/CFT has proven itself a powerful tool in extending our understanding of strongly coupled quantum theories. While studies of AdS/CFT have predominantly focused on tree level calculations, there has been growing interest in the loop effect recently. We studied the 1-loop correction to the gauge boundary-to-boundary correlator due to its coupling to a complex scalar field. In this talk, I would outline our main results, explain the Cutkosky rule in AdS space, and discuss an extra divergence we found in both real and imaginary part of the loop integral.
I'll describe a connection between uncertainty relations, information locking and low-distortion embeddings of L2 into L1. Exploiting this connection leads to the first explicit construction of entropic uncertainty relations for a number of measurements that is polylogarithmic in the dimension d while achieving an average measurement entropy of (1-e) log d for arbitrarily small e. From there, it is straightforward to obtain the first strong information locking scheme that is efficiently computable using a quantum computer.
The average quantum physicist on the street believes that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian $H=p^2+ix^3$, which is obviously not Dirac Hermitian, has a real positive discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory.
The second law of thermodynamics tells that physics imposes a fundamental constraint on the efficiency of all thermal machines.
Here I will address the question of whether size imposes further constraints upon thermal machines, namely whether there is a minimum size below which no machine can run, and whether when they are small if they can still be efficient? I will present a simple model which shows that there is no size limitation and no limit on the efficiency of thermal machine and that this leads to a unified view of small refrigerators, pumps and engines.
Check back for details on the next lecture in Perimeter's Public Lectures Series