Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Higher derivative extensions of the Standard Model are renormalizable but without a quadratic divergent higgs mass. Electroweak presision data constraint the scale of the higher derivatives to at least a few TeV, but then these models have no flavor problem. We skim through these and other interesting results, most remarkably causality as an emergent characteristic at long distances. But we start by explaining the indefinite metric quantization procedure proposed by Lee and Wick which is necessary for unitary.
More than forty years ago Nobel laureate P.W. Anderson studied the overlap between two nearby ground states. The result that the overlap tends to zero in the thermodynamics limit was catastrophic for those times. More recently the study of the overlap between ground states, i.e. the fidelity, led to the formulation of the so called fidelity approach to (quantum) phase transition (QPT). This new approach to QPT does not rely on the identification of order parameters or symmetry pattern; rathers it embodies the theory of phase transitions with an operational meaning in terms of measurements.
Theories with extra dimensions naturally give rise to a large landscape of vacua stabilized by flux. I will show that the fastest decay is a giant leap to a wildly distant minimum, in which many different fluxes discharge at once. Indeed, the fastest decay is frequently the giantest leap of all, where all the fluxes discharge at once, which destabilizes the extra dimensions and begets a bubble of nothing. Finally, I will discuss how these giant leaps are mediated by the nucleation of "monkey branes" that wrap the extra dimensions.
TBA
We will discuss two topics. First we will revisit the asymptotic structure of classical de Sitter space. In particular we will construct charges at future infinity (I^+) and obtain the asymptotic symmetry group drawing parallels with the BMS group of flat space. Secondly, move away from the region I^+ and study the space living near the cosmological horizon by considering large rotating Nariai black holes whose size tends to that of the cosmological horizon.
Check back for details on the next lecture in Perimeter's Public Lectures Series