Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Unexplained hierarchies and the quest for naturalness have driven model-building efforts in particle physics and cosmology for the past few decades. I will speak about various approaches to problems of 'unnatural'
fine tunings, in the context of supersymmetry, inflation and LHC phenomenology respectively.
TBA
Hubeny identified a scenario in which a charged particle falling toward a near-extreme Reissner-Nordstrom black hole can penetrate the black hole and drive it beyond the extremal limit, thereby giving rise to an apparent violation of cosmic censorship. A version of this scenario, relevant to a Kerr black hole and involving a particle with orbital and/or spin angular momentum, was recently examined by Jacobson and Sotiriou (following up on earlier work by Hod); here also the black hole is driven beyond the extremal limit.
We discuss the calculation of higher loop contributions to the anomalous dimensions of operators in N=6 Superconformal Chern-Simons theories. These lead us to conjecture the form of an interpolating function of the 't Hooft coupling that is not determined by integrability.
This is a geometric tutorial about straight and twisted vectors and forms (ie, de Rham currents) leading to some wild thoughts about the EM field as a *thing*, ie with properties similar to a piece of matter; and to some even wilder thoughts about a metric-free GR.
Recently, emergent phenomena have started to attract more attention. Instead of assuming a symmetric world, one begins with a chaotic one. In this talk, I will describe this picture, discuss the main constraints on emergence, and then present a few phenomenological procedures that can be implemented to study the emergent phenomena.
This talk presents sufficient conditions for equilibration and thermalization of subsystems within closed many body quantum systems. That is, we identify when the local properties of the equilibrium state resemble those of a thermal state. With this aim, the recent progress in this field is reviewed and we introduce a novel perturbation technique for a realistic weak coupling between the subsystem and its environment. Unlike the standard perturbation theory, our technique is robust in the thermodynamic limit.
In my talk I raise the question of the fundamental limits to the size of thermal machines - refrigerators, heat pumps and work producing engines - and I will present the smallest possible ones. I will also discuss the issue of a possible complementarity between size and efficiency and show that even the smallest machines could be maximally efficient. Finally I will present a new point of view over what is work and what do thermal machines actually do.
I provide a reformulation of finite dimensional quantum theory in the circuit framework in terms of mathematical axioms, and a reconstruction of quantum theory from operational postulates. The mathematical axioms for quantum theory are the following: [Axiom 1] Operations correspond to operators. [Axiom 2] Every complete set of positive operators corresponds to a complete set of operations. The following operational postulates are shown to be equivalent to these mathematical axioms: [P1] Definiteness.
Quantum theory can be thought of a noncommutative generalization of classical probability and, from this perspective, it is puzzling that no quantum generalization of conditional probability is in widespread use. In this talk, I discuss one such generalization and show how it can unify the description of ensemble preparations of quantum states, POVM measurements and the description of correlations between quantum systems.
Check back for details on the next lecture in Perimeter's Public Lectures Series