Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Tensor network algorithms are a powerful technique for the study of quantum systems in condensed matter physics. In this short series of lectures, I will present an applied perspective on tensor network algorithms.
Cosmic inflation has given us a remarkably successful cosmological phenomenology. But the original goal of explaining why the cosmos is *likely* to take the form we observe has proven very difficult to realize. I review the status of "eternal inflation" with an eye on the roles various infinities have (both helpful and unhelpful) in our current understanding. I then discuss attempts to construct an alternative cosmological framework that is truly finite, using ideas about equilibrium and dark energy. I report some recent results that point to observable signatures.
Tensor network algorithms are a powerful technique for the study of quantum systems in condensed matter physics. In this short series of lectures, I will present an applied perspective on tensor network algorithms.
The Polchinski equations for the Wilsonian renormalization group in the $D$--dimensional matrix scalar field theory can be written at large $N$ in a Hamiltonian form. The Hamiltonian defines evolution along one extra holographic dimension (energy scale) and can be found exactly for the subsector of $Tr\phi^n$ (for all $n$) operators. We show that at low energies independently of the dimensionality $D$ the Hamiltonian system in question reduces to the {\it integrable} effective theory.
Tensor network algorithms are a powerful technique for the study of quantum systems in condensed matter physics. In this short series of lectures, I will present an applied perspective on tensor network algorithms.
How hopeful can we be about new technologies paving a path away from our
current reliance on oil-based energy? Energy experts investigate the
alternatives in a moderated discussion presented live on TVO’s The Agenda with Steve Paikin. Speakers include: Barry Brook, Walt Patterson, Tom Rand, Zoë Caron, and Jatin Nathwani
As the world’s population inches toward the 8 billion mark, energy
experts look at how supply and demand of energy will affect global
economics and politics in a moderated discussion on TVO’s The Agenda with Steve Paikin. Speakers include: Jason Blackstock, Jian hua Ding, Velma McColl, Vagish Sharma, and Jose Maria Valenzuela
Born from a unique, international energy summit of scientists,
engineers, entrepreneurs and future leaders from around the world, the
Equinox Communiqué offers visionary proposals for transformative action
on reducing the electricity-related emissions that drive climate change.
Through a series of mini presentations, Summit participants discuss
the Equinox Summit: Energy 2030 and explain the six main recommendations
outlined in the Equinox Communiqué. These speakers lay the groundwork
Check back for details on the next lecture in Perimeter's Public Lectures Series