Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We explore the role of rotational symmetry of quantum key distribution
(QKD) protocols in their security. Specifically, in the first part of the
talk, we consider a generalized QKD protocol with discrete rotational
symmetry. Note that, before our work, each QKD protocol seems to have a
different security proof. Given that the techniques of those proofs are
similar, it will be interesting to have a unified proof for QKD protocols
with symmetry (e.g., the BB84 protocol and the SARG04 protocol). This is
Graduate Course on Standard Model & Quantum Field Theory
Graduate Course on Standard Model & Quantum Field Theory
Modified gravity models seem to have classical instabilities, ghosts degrees of freedom and superluminal modes. Besides these constraints new dynamical bounds have found to be typical of these models. The cosmological nature of all these constraints is discussed.
Existence of dark energy and nonzero nu mass are two most exciting discoveries of recent years. More excitingly, the similarity between the energy scales of these two raise the question: "Are they related?" I will explore how such connection could be there in nature and its cosmological consequences mainly in structure formation.
TBA
We have previously isolated and characterized a multipotent precursor cell (termed SKPs for SKin-derived Precursors) from both rodent and human skin, and have shown that these stem cells share many characteristics with a multipotent stem cell that is found in the embryo termed a neural crest stem cell. Here I will discuss our current work with regard to the basic biology of these stem cells, with a focus on the what, where and why, and on their therapeutic potential with specific regard to the nervous system.
Graduate Course on Standard Model & Quantum Field Theory
Most modern discussions of Bell's theorem take microscopic causality (the arrow of time) for granted, and raise serious doubts concerning realism and/or relativity. Alternatively, one may allow a weak form of backwards-in-time causation, by considering "causes" to have not only "effects" at later times but also "influences" at earlier times. These "influences" generate the correlations of quantum entanglement, but do not enable information to be transmitted to the past. Can one realize this scenario in a mathematical model?