Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will discuss a set of strong, but probabilistically intelligible, axioms from which one can {\em almost} derive the appratus of finite dimensional quantum theory. These require that systems appear completely classical as restricted to a single measurement, that different measurements, and likewise different pure states, be equivalent up to the action of a compact group of symmetries, and that every state be the marginal of a bipartite state perfectly correlating two measurements.
We review situations under which standard quantum adiabatic conditions fail. We reformulate the problem of adiabatic evolution as the problem of Hamiltonian eigenpath traversal, and give cost bounds in terms of the length of the eigenpath and the minimum energy gap of the Hamiltonians. We introduce a randomized evolution method that can be used to traverse the eigenpath and show that a standard adiabatic condition is recovered. We then describe more efficient methods for the same task and show that their implementation complexity is close to optimal.
Clock synchronization, relativity of simultaneity, nature of space, and how a universal speed limit can make sense.
Dr. Smolin is a faculty member at Perimeter Institute for Theoretical Physics and author of several books including most recently “The Trouble with Physics”. He is known for devising several different approaches to quantum gravity, in particular, loop quantum gravity. His research interests include cosmology, elementary particle theory, the foundations of quantum mechanics, and theoretical biology. This information Chalk and Talk will explore in special topics in Quantum Gravity.
Heisenberg Uncertainty Principle, Feynman sum over paths interpretation of quantum mechanics, and the harmonic oscillator: introduction to tunnelling, QFT (what is a photon?), and zero point energy.
TBA
A discussion of the properties of the dynamics of spacetime and how certain aspects of the relational dynamics lead to difficulties in the quantum theory.
In a 1960 paper, E. C. G. Stueckelberg showed how one can obtain the familiar complex-vector-space structure of quantum mechanics by starting with a real-vector-space theory and imposing a superselection rule. In this talk I interpret Stueckelberg’s construction in terms of a single auxiliary real-vector-space binary object—a universal rebit, or “ubit." The superselection rule appears as a limitation on our ability to measure the ubit or to use it in state transformations. This interpretation raises the following questions: (i) What is the ubit?
Einstein's two principles (continued), the relativistic Doppler shift, nature of time, and the geometry of spacetime.
Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. We show that it is possible to derive the complex nature of the quantum formalism directly from the assumption that a pair of real numbers is associated to each sequence of measurement outcomes, and that the probability of this sequence is a real-valued function of this number pair.