Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
The inner crust of neutron stars has a remarkable property that it is crystalline as well as superfluid. I will describe the low energy theory of systems with this property in general, and describe how to relate the low energy constants of the theory to derivatives of the free energy with respect to lattice shape and chemical potentials. As an application, I will discuss the mixing of lattice and superfluid modes in the neutron star inner crust.
Low-density neutron matter is relevant to the study of neutron-rich nuclei and neutron star crusts. Unpolarized neutron matter has been studied extensively over a number of decades, while experimental guidance has recently started to emerge from the field of ultracold atomic gases. We study population-imbalanced neutron matter (possibly relevant to magnetars and to density functionals of nuclei) applying a Quantum Monte Carlo method that has proven successful in the field of cold atoms. We report on the first ab initio simulations of superfluid low-density polarized neutron matter.
We present new equations of state (EOS) of nuclear matter for a wide range of temperatures densities and proton fractions for use in supernova and neutron star merger simulations. We employ a full relativistic mean field (RMF) calculation for matter at intermediate density and high density and the Virial expansion of a nonideal gas for matter at low density. We tabulate the resulting EOS in the temperature range T = 0 - 80 MeV the density range nB = 10Ã¢
We construct the relativistic equation of state (EOS) of dense matter covering a wide range of temperature proton fraction and density for the use of core-collapse supernova simulations. The study is based on the relativistic mean-field (RMF) theory which can provide an excellent description of nuclear matter andfinite nuclei. The Thomas-Fermi approximation is adopted to describe the non-uniform matter which is composed of a lattice of heavy nuclei.We present two types of results.
Recent discoveries, including a 2 solar mass pulsar, rapid cooling in the Cas A supernova remnant, and estimates of masses and radii from photospheric radius expansion bursts and thermal emissions from neutron stars, are able to constrain significantly the properties of dense matter. Implications for the pressure-density relation and properties of superfluids in neutron star interiors will be discussed.