Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The AdS/CFT correspondence from string theory provides a quantum theory of gravity in which spacetime and gravitational physics emerge from an ordinary non-gravitational system with many degrees of freedom. In this talk, I will explain how quantum entanglement between these degrees of freedom is crucial for the emergence of a classical spacetime, and describe progress in understanding how spacetime dynamics (gravitation) arises from the physics of quantum entanglement."
The moduli space of k G instantons on C^2, where G is a classical gauge group, has a well known HyperKahler quotient formulation known as the ADHM construction. The extension to exceptional groups is an open problem.
In string theory this is realized using a system of branes, and the moduli space of instantons is identified with the Higgs branch of a particular supersymmetric gauge theory with 8 supercharges.
The Higgs couplings to fermions are known parameters within the Standard Model. Deviations from these
expectations would be clear signals of new physics and are thus important target measurements for the LHC program.
In this talk I shall discuss ways to extra information about the coupling of the Higgs boson to the charm quark with
emphasis on methods applicable with the available LHC data set. A novel method based on the current ATLAS and CMS
It is well known that S-matrix Analyticity, Lorentz invariance and Unitarity place strong constraints on whether Effective Field Theories can be UV completed. A large class of gravitational field theories such as Massive Gravity and DGP inspired braneworld models contain as limits Galileon theories which in the past have been argued to violate the conditions necessary for a UV completion.