Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Scalar field models of early universe inflation are effective field theories, typically valid only up to some UV energy scale, and receive corrections through higher dimensional operators due to the UV physics. Corrections to the tree level inflationary potential by these operators can ruin an otherwise suitable model of inflation. In this talk, I will consider higher dimensional kinetic operators, and the corrections that they give to the dynamics of the inflaton field.
When a pair of particles is produced close to threshold, they may form a bound state if the potential between them is attractive. Can we use such bound states to obtain information about new colored particles at the LHC? I will discuss the relevant issues using examples from the MSSM and other beyond the standard model scenarios.
In the context of AdS/CFT correspondence the AdS_3/CFT_2 instance of the duality stands apart from other well studied cases, like AdS_5/CFT_4 or AdS_4/CFT_3. One of the reasons is that the CFT side of this duality is not a theory of matrices but rather a two dimensional orbifold based on the group of permutations. In this talk we will discuss some aspects of this theory. In particular a diagrammatic language, akin to Feynman diagrams used for gauge theories, will be developed.
Alongside the effort underway to build quantum computers, it is important to better understand which classes of problems they will find easy and which others even they will find intractable. Inspired by the success of the statistical study of classical constraint optimization problems, we study random ensembles of the QMA$_1$-complete quantum satisfiability (QSAT) problem introduced by Bravyi. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) problem.