Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
The gauge/gravity duality may give a nonperturbative formulation of superstring/M theory, and hence, if one can study the nonperturbative dynamics of the gauge theory, it would be useful to understand the nonperturbative aspects of superstring theory.
I belong to the lucky generation who survived World War Two and
unexpectedly found ourselves alive and young at the dawn of four
simultaneous revolutions. We were present at the creation of four new
technologies that were to continue transforming the world for the
following sixty-five years. First revolution, Space, beginning with the
first spacecraft, the V2 rocket, which came crashing down on our heads
in London in the last year of the war. Second revolution, Nuclear
Energy, beginning with the tragedies of Hiroshima and Nagasaki. Third
Tensor network algorithms are a powerful technique for the study of quantum systems in condensed matter physics. In this short series of lectures, I will present an applied perspective on tensor network algorithms.
The gauge/gravity duality may give a nonperturbative formulation of superstring/M theory, and hence, if one can study the nonperturbative dynamics of the gauge theory, it would be useful to understand the nonperturbative aspects of superstring theory.
Though the observed CMB is at very low energy, it encodes ultra high-energy physics in spatial variations of the photon temperature and polarization fluctuations. This effect is believed to be dominated by the initial quantum state of the Universe. I will describe the first theoretical tools by which to construct such a state from fundamental physics.
The gauge/gravity duality may give a nonperturbative formulation of superstring/M theory, and hence, if one can study the nonperturbative dynamics of the gauge theory, it would be useful to understand the nonperturbative aspects of superstring theory.
Recently, several neutrino physics has witnessed an accumulation of anomalous results. In the first part of this talk, we will discuss the tension that the MINOS experiments has seen between oscillations of neutrinos and anti-neutrinos. We will show that, phenomenologically, this tension can be explained if neutrinos are hypothesized to have new interactions mediated by higher-dimensional operators, but we will also show that problems arise when one attempts to embed these operators into renormalizable models.
Unexplained hierarchies and the quest for naturalness have driven model-building efforts in particle physics and cosmology for the past few decades. I will speak about various approaches to problems of 'unnatural'
fine tunings, in the context of supersymmetry, inflation and LHC phenomenology respectively.
TBA
Check back for details on the next lecture in Perimeter's Public Lectures Series