Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I'll describe a connection between uncertainty relations, information locking and low-distortion embeddings of L2 into L1. Exploiting this connection leads to the first explicit construction of entropic uncertainty relations for a number of measurements that is polylogarithmic in the dimension d while achieving an average measurement entropy of (1-e) log d for arbitrarily small e. From there, it is straightforward to obtain the first strong information locking scheme that is efficiently computable using a quantum computer.
The average quantum physicist on the street believes that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian $H=p^2+ix^3$, which is obviously not Dirac Hermitian, has a real positive discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory.
The second law of thermodynamics tells that physics imposes a fundamental constraint on the efficiency of all thermal machines.
Here I will address the question of whether size imposes further constraints upon thermal machines, namely whether there is a minimum size below which no machine can run, and whether when they are small if they can still be efficient? I will present a simple model which shows that there is no size limitation and no limit on the efficiency of thermal machine and that this leads to a unified view of small refrigerators, pumps and engines.
We discuss the coupling of fermions to holographic superconductors in 3+1 and 4+1 (bulk) dimensions. We do so from a top-down perspective, by considering the reduction of the fermionic sector in recently found consistent truncations of type IIB and D=11 supergravity on squashed Sasaki-Einstein manifolds, which notably retain a finite number of charged (massive) modes. The truncations in question also include the string/M-theory embeddings of various models which have been proposed to describe systems with non-relativistic scale invariance via holography.