Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Cosmology of the early universe; theory and detection of gravitational waves, e.g. from the violent last stages of inspiral as two orbiting black holes coalesce. Using cutting edge quantum physics in designing practical, ultra sensitive gravitational wave detectors.
Applications of the quantum nature of our universe to potential new technologies like quantum cryptography and quantum computation. In particular, theoretical developments such as fault-tolerant quantum codes and protocols for quantum error correction.
Many aspects of string theory, ranging from its mathematical structure and various formulations, to possible implications for black holes and cosmology. Using string phenomenology to connect theory with reality, i.e. string mathematics with elementary particle physics.
Applying the lessons learned in quantum information theory to gain a better understanding of quantum mechanics itself. Is quantum theory simply a new type of probability theory? Exploring new directions towards combining quantum theory with gravity.
Physics beyond the standard model: theories of elementary particles with extra space dimensions (large, small, warped and flat); supersymmetry; grand unification; dark matter; inflation and dark energy; as well as relationships between the different subjects.
Observational cosmology, with particular focus on the formation and evolution of large scale structures in our universe like clusters of galaxies as large as 500 million light years. “Weighing” the universe, and mapping out the mysterious dark matter it contains.
Cosmology as a natural meeting ground for fundamental theory (e.g. superstring theory or quantum gravity) and observations. Exploring how seeds laid down in the very early universe developed into the large scale structure we observe in the universe today.
Mathematical methods in superstring theory with applications to black hole physics (e.g. Hawking radiation) and models of the fundamental forces of nature.
Implications of high-energy elementary particle physics for physics of the early universe and its evolution (Big Bang, creation of matter, formation of galaxies, etc). And vice-versa: implications of observable cosmological data for fundamental physics.
We present a short review of the local conformal symmetry and its anomalous violation in curved $4d$ space-time. Furthermore we discuss the ambiguities of conformal anomaly and the anomaly-induced effective actions. Despite the conformal symmetry is always broken at quantum level, it is useful for constructing the best known approximations for investigating quantum corrections to the classical action of gravity. These quantum corrections represent an appropriate basis for a number of applications in cosmology and black hole physics.