Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Quantum fluctuations of spacetime give rise to quantum foam, and black hole physics dictates that the foam is of holographic type. One way to detect quantum foam is to exploit the fact that an electromagnetic wavefront will acquire uncertainties in direction as well as phase as it propagates through spacetime. These uncertainties can show up in interferometric observations of distant quasars as a decreased fringe visibility.
If some form of string theory indeed describes the ultra high energy physics of our universe, then there are two ingredients which are very likely to remain at low energies. The first, is a fifth force in the form of an additional abelian gauge group. The second, and more dramatic, is supersymmetry. Both may be observed at the upcoming Large Hadron Collider. In this talk I will explore a possible intimate connection between these two ingredients which leads to surprising predictions.
Quantum Gravity may be entirely unconventional as a theory, leading to completely unfamiliar (compared to other fields of physics) and unexpected experimental signatures. One particularly interesting avenue for research in that field is the study of models in which quantum gravity operates as a decoherening ``foamy space-time medium\'\', with which ordinary propagating matter interacts.
The one clean qubit model is a model of quantum computation in which all but one qubit starts in the maximally mixed state. One clean qubit computers are believed to be strictly weaker than standard quantum computers, but still capable of solving some classically intractable problems. I\'ll discuss my recent work in collaboration with Peter Shor which shows that evaluating a certain approximation to the Jones polynomial at a fifth root of unity for the trace closure of a braid is a complete problem for the one clean qubit complexity class.
The simplest algebraic curves of genus one are the nonsingular cubics in two-dimensional complex projective space. Interpreting CP^2 as the space of pure quantum states associated with a Hilbert space of dimension three, I will show how various properties of d=3 symmetric informationally complete positive operator valued measures can be understood in terms of the geometry of such curves. The resulting structure, although of considerable complexity, is very beautiful from a mathematical perspective.
The detection of primordial non-Gaussianity could provide a powerful means to rule out various inflationary scenarios. Although scale-invariant non-Gaussianity is currently best constrained by the Cosmic Microwave Background, single-field inflation models with changing sound speed can have strongly scale dependent non-Gaussianity. I will discuss the theoretical motivation for such models and present work on the likely ability of current and future large scale structure measurements to constrain them.
I will present a construction of supersymmetric Wilson loop operators in N=4 SYM for an arbitrary path on an S3 subspace of space-time. I will show how they are evaluated in AdS and in particular that the string world-sheet is a generalized calibration with respect to an almost-complex structure associate to the supersymmetries preserved by the loop. I will present some special examples and in the case when the loop is restricted to an S2, some evidence that the calculation reduces to a perturbative calculation in YM in 2-dimensions on S2.