Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday May 17, 2006
Speaker(s): 

Nanostructured materials continue to be the focus of intense research due to their promise of innumerable practical applications as well as advancing the fundamental understanding of these intriguing materials. From physics, to chemistry, to biology, to computer science, across the engineering disciplines and into the imagination of the general event, nanotechnology has become an extremely popular buzzword that represents both hope and hype to many people.

Collection/Series: 

 

Wednesday May 10, 2006
Speaker(s): 

We will look at the axioms of quantum mechanics as expressed, for example, in the book by M. A. Nielsen and I. L. Chung ("Quantum Computation and Quantum Information"). We then take a critical look at these axioms, raising several questions as we go. In particular, we will look at the possible informational completeness property of the family of operators that we measure. We will propose physical solutions based on the results of quantum mechanics on phase space and the measurement of quantum particles by quantum mechanical means.

 

Wednesday May 10, 2006
Speaker(s): 

A variety of physical phenomena involve multiple length and time scales. Some interesting examples of multiple-scale phenomena are: (a) the mechanical behavior of crystals and in particular the interplay of chemistry and mechanical stress in determining the macroscopic brittle or ductile response of solids; (b) the molecular-scale forces at interfaces and their effect in macroscopic phenomena like wetting and friction; (c) the alteration of the structure and electronic properties of macromolecular systems due to external forces, as in stretched DNA nanowires or carbon nanotubes.

Collection/Series: 

 

Wednesday May 03, 2006
Speaker(s): 

Inside Harvard College Observatory in 1904, a young woman named Henrietta Swan Leavitt sat hunched over a stack of glass photographic plates, patiently counting stars. The images had been taken by a telescope high in the Peruvian Andes, and Miss Leavitt was given the tedious chore of measuring the brightness of thousands of tiny lights, something that would now be done by machine. Her job title was \'computer,\' but during the next few years she rose above her station as a tabulator of data and discovered a new law, one that would change forever our view of the universe.

 

Wednesday May 03, 2006
Speaker(s): 

Inspired by the notion that the differences between quantum theory and classical physics are best expressed in terms of information theory, Hardy (2001) and Clifton, Bub, and Halvorson (2003) have constructed frameworks general enough to embrace both quantum and classical physics, within which one can invoke principles that distinguish the classical from the quantum.

 

Tuesday May 02, 2006
Speaker(s): 

A cosmological model based on an inhomogeneous D3-brane moving in an AdS_5 X S_5 bulk is introduced. Although there is no special points in the bulk, the brane Universe has a center and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the center, giving a possible geometrical origin for the smallness of a present-day cosmological constant.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 26, 2006

Entanglement entropy is currently of interest in several areas in physics, such as condensed matter, field theory, and quantum information. One of the most interesting properties of the entanglement entropy is its scaling behavior, especially close to phase transitions. It was believed that for dimensions higher than 1 the entropy scales like surface area of the subsystem. We will describe a recent result for free fermions at zero temperature, where the entropy in fact scales faster. The latter problem will be related to a mathematical conjecture due to H. Widom (1982).

Scientific Areas: 

 

Wednesday Apr 26, 2006
Speaker(s): 

I will describe some recent advances in the simulation of binary black hole spacetimes using a numerical scheme based on generalized harmonic coordinates. After a brief overview of the formalism and method, I will present results from the evolution of a couple of classes of initial data, including Cook-Pfieffer quasi-circular inspiral data sets, and binaries constructed via scalar field collapse. In the latter case, preliminary studies suggest that in certain regions of parameter space there is extreme sensitivity of the resulting orbit to the initial conditions.

Collection/Series: 
Scientific Areas: 

Pages