Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
These three lectures cover several ideas of physics beyond the Standard Model. My focus is on ideas that give a natural stabilization solution to the electroweak scale, which is mysteriously light compared to the gravitational Planck scale. These ideas include supersymmetric field theories, extra dimensions, and Higgs boson physics. I shall describe what I think are the "best bets" among these approaches, and more importantly the ways they can be discerned by experiment.
Recently, a new class of topological states has been theoretically predicted and experimentally realized. The topological insulators have an insulating gap in the bulk, but have topologically protected edge or surface states due to the time reversal symmetry. In two dimensions the edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. I shall review the theoretical prediction[1] of the QSH state in HgTe/CdTe semiconductor quantum wells, and its recent experimental observation[2].
Our starting point is a particular `canvas' aimed to `draw' theories of physics, which has symmetric monoidal categories as its mathematical backbone. With very little structural effort (i.e. in very abstract terms) and in a very short time this categorical quantum mechanics research program has reproduced a surprisingly large fragment of quantum theory. Philosophically speaking, this framework shifts the conceptual focus from `material carriers' such as particles, fields, or other