Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Here are some topics in physics and philosophy on which my work is incomplete. I invite my friends in this assembly, and their colleagues and students, to continue the work and inform me about their progress.
In this talk I will discuss the question of how to characterize, in an operationally meaningful way, the inevitable disturbance of a quantum system in a measurement. I will review some well-known limitations of quantum measurements (facts), and give precise formulations of trade-off relations between information gain and disturbance. Famous examples among these limitations are the uncertainty principle, the complementarity principle, and Wigners theorem on limitations on measurements imposed by conservation laws.
Newtons methodology is significantly richer than the hypothetico-deductive model. It is informed by a richer ideal of empirical success that requires not just accurate prediction but also accurate measurement of parameters by the predicted phenomena. It accepts theory mediated measurements and theoretical propositions as guides to research Kuhn has suggested that along with revolutionary changes in scientific theory come revolutionary changes in methodology.
A theory governing the metric and matter fields in spacetime is {\it
Abner Shimony is well-known for, among other contributions, his seminal work on Bell inequalities, turning a philosophical question into an experimental one. In my presentation I like to remind us how this experimental field is nowadays feeding into applied science. This is happening both in terms of the involved technologies and in the conceptual tools.
I will report my efforts to describe elementary Quantum behaviours, specifically single-particle interference and two-particle entanglement, in an accelerating frame.