Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The possibility that rotational invariance ins broken during the inflationary era is discussed. The implications of this for the microwave background asymmetry are derived using a model independent approach. A particular inflationary model that realizes these ideas is studied.
Hollywood movies about aliens abound, but do they really exist? The real scientific search for evidence of life, and particularly intelligent life, elsewhere in the cosmos is just as exciting as the reel version, and a lot more logical. So far, there is life-as-we-know-it to guide our speculations and observations. But a new appreciation for the tenacity of life, a growing respect for the world of microbes, and new search technologies involving observatories and spacecraft are rapidly expanding our viewpoint. Many expect surprises.
We show that singlets composed of multiple multi-level quantum systems can naturally arise as the ground state of a physically-motivated Hamiltonian. The Hamiltonian needs to be one which simply exchanges the states of nearest neighbours in any graph of interacting d-level quantum systems (qudits) as long as the graph also has d sites. We point out that local measurements on some of these qudits, with the freedom of choosing a distinct measurement basis at each qudit randomly from an infinite set of bases, project the remainder onto a singlet state.
Graduate Course on Standard Model & Quantum Field Theory
Some of the speculations on new physics, beyond what is in the standard model are reviewed. Particular attention is paid to ideas that try to address the hierarchy puzzle, i.e., why is the weak scale so much smaller than the Planck scale. These new theories will be tested at the large hadron collider in the near future.
Graduate Course on Standard Model & Quantum Field Theory
Error assumptions for fault tolerance re-examined (Other error models, correlated errors, leakage errors, coherent and non-Markovian errors)
Circuit assumptions for fault tolerance re-examined (other universal gate sets, local gates, fresh ancillas, no measurements, parallelism)
We discuss D-brane instantons in four-dimensional string compactifications with special emphasis on Eucliden D2-branes in Type IIA orientifolds with spacetime filling D6-branes. These can induce superpotential couplings among the open string fields which are forbidden at the perturbative level since they violate some of the global U(1) symmetries generically present in string theory.
We consider a six-dimensional space-time, in which two of the dimensions are compactified by a flux. Matter can be localized on a codimension one brane coupled to the bulk gauge field and wrapped around an axis of symmetry of the internal space. By studying the linear perturbations around this background, we show that the gravitational interaction between sources on the brane is described by Einstein 4d gravity at large distances.