Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Path integral formulations for gauge theories must start from the canonical formulation in order to obtain the correct measure. A possible avenue to derive it is to start from the reduced phase space formulation. We review this rather involved procedure in full generality. Moreover, we demonstrate that the reduced phase space path integral formulation formally agrees with the Dirac's operator constraint quantisation and, more specifically, with the Master constraint quantisation for first class constraints.
The asymptotic formula for the Ponzano-Regge model amplitude is given for non-tardis triangulations of handlebodies in the limit of large boundary spins. The formula produces a sum over all possible immersions of the boundary triangulation in three dimensional Euclidean space weighted by the cosine of the Regge action evaluated on these immersions. Furthermore the asymptotic scaling registers the existence of flexible immersions.
Scalar field models of early universe inflation are effective field theories, typically valid only up to some UV energy scale, and receive corrections through higher dimensional operators due to the UV physics. Corrections to the tree level inflationary potential by these operators can ruin an otherwise suitable model of inflation. In this talk, I will consider higher dimensional kinetic operators, and the corrections that they give to the dynamics of the inflaton field.
Check back for details on the next lecture in Perimeter's Public Lectures Series