Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Sound waves with long-distance propagation are both a consequence of hydrodynamics, and a danger to hydrodynamics' very existence, as they violate the assumption of local equilibration. In the talk, I will discuss what the thermally excited sound and shear waves do to viscosity. In 2+1 dimensions, the shear viscosity and the diffusion constant cease being independent transport coefficients. In 3+1 dimensions, the fluctuations render the second-order hydrodynamics invalid.
Constant mean curvature (uniform K) hypersurfaces extend to future null infinity in asymptotically flat spacetimes. With conformal compactification, the entire hypersurface can be covered by a finite spatial grid, eliminating any need an "outgoing wave" boundary condition or for extrapolation to find gravitational wave amplitudes. I will discuss the asymptotic behavior near future null infinity, how this can be simplified by suitable gauge conditions, and how this determines the physical Bondi energy and momentum of the system.
We construct a class of entangled supersymmetric states which is used as a non-local resource in the CHSH game. This class of super entangled states is more non-local then maximally entangled states if the supersymmetric degrees of freedom are accessible to measurement.
Consequently, we show that the winning probability for the CHSH game is greater than cos2(pi/8) corresponding to an expected value greater than Tsirelson's bound.
Low-temperature phases of strongly-interacting quantum many-body systems can exhibit a range of exotic quantum phenomena, from superconductivity to fractionalized particles. One exciting prospect is that the ground or low-temperature thermal state of an engineered quantum system can function as a quantum computer. The output of the computation can be viewed as a response, or 'susceptibility', to an applied input (say in the form of a magnetic field).
Check back for details on the next lecture in Perimeter's Public Lectures Series