Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
The Standard Model is currently the theory which describes the most fundamental constituents of matter and the forces which govern their interactions. Since the start-up of the LHC accelerator, the ATLAS detector has collected sufficient data to allow tests of this theory at the smallest distance scales ever probed. The objective is to find significant deviations between the observed data and the Standard Model predictions, revealing the existence of new phenomena.
The study of the anisotropies in the cosmic microwave background radiation over the past two decades has provided us with important information about the early universe. In particular, there is strong evidence that these anisotropies were generated long before the cosmic microwave radiation was emitted. The most commonly studied idea is that they originated as quantum fluctuations during a period of inflation. In addition to a spectrum of scalar perturbations consistent with the one that has been observed, inflation also predicts the presence of gravitational waves.
Topology has many different manifestations in condensed matter physics. Real space examples include topological defects such as vortices, while momentum space ones include topological band structures and singularities in the electronic dispersion. In this talk, I will focus on two examples. The first is that of a vortex in a topological insulator that is doped into the superconducting state. This system, we find, has Majorana zero modes and thus, is a particularly simple way of obtaining these states.
A non-trivial test of the string vs. integrability correspondence is
suggested: exact equivalence is established between strings in AdS4 x
Check back for details on the next lecture in Perimeter's Public Lectures Series