Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
Categorical quantum mechanics (CQM) uses symmetric monoidal categories to formalize quantum theory, in order to extract the key structures that yield protocols such as teleportation in an abstract way. This formalism admits a purely graphical calculus, but the causal structure of these diagrams, and the formalism in general, is unclear. We begin by considering the signaling abilities of probabilistic devices with inputs and outputs and we show how a non-signaling device can become a perfect signaling device under time-reversal.
I will first present a theorem based on the Decoupling Theorem of [1] which gives sufficient and necessary conditions for a quantum channel (CPTPM) being such that it yields the same output for almost all possible inputs. This theorem allows us to reproduce and generalize results oft [2,3], in which cornerstones of statistical physics are derived from first principles of quantum mechanics, in a very natural and easy way. Specifically, we express them in a way which allows to apply results about random 2-qubit interactions [4].
Quantum gravity is about finding out what is the more fundamental nature of spacetime, as a physical system. Several approaches to quantum gravity, suggest that the very description of spacetime as a continuum fails at shorter distances and higher energies, and should be replaced by one in terms of discrete, pre-geometric degrees of freedom, possibly of combinatorial and algebraic nature.