Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Problematic growths of curvature and anisotropy are found in nonsingular bouncing cosmologies that include both an ekpyrotic phase and a bouncing phase. Classically, initial curvature and anisotropy that are suppressed during the ekpyrotic phase will grow back exponentially during the nonsingular bouncing phase. Besides, curvature and shear perturbations are generated by quantum fluctuations during the ekpyrotic phase. In the bouncing phase, an adiabatic curvature perturbation grows to dominate and gives rise to a blue spectrum that spoils the scale-invariance.
Besides their experimental relevance in condensed matter and quantum information science, quantum spin systems are an interesting playground to study decoherence and quantum entanglement. Random matrices are used since the 50' to model quantum chaotic dynamics and complex quantum systems. I introduce new random matrix models which lead to explicit solutions for some simple open or closed quantum spin systems.
In this talk I will provide evidence supporting the Dolan/Nirschl/Osborn conjecture for the precise form of the amplitude of four-point functions of 1/2-BPS operators in N=4 SYM theory at strong coupling and in the large N limit. I will also discuss the methods that allowed the evaluation of amplitudes involving operators of arbitrary conformal dimension.
Quantum theory can be thought of as a noncommutative generalization of Bayesian probability theory, but for the analogy to be convincing, it should be possible to describe inferences among quantum systems in a manner that is independent of the causal relationship between those systems.
The talk consists of two parts: (1) Quasi-single inflation, where the isocurvature direction has mass of order Hubble parameter. This part is based on 0911.3380 and new results about higher mass, and a sharp turn in trajectory. (2) Multi-stream inflation, where the inflationary trajectory bifurcates. This part is based on 0903.2123, 1006.5021 and a on-going project on calculating the bifurcation probability in a complicated landscape.
Check back for details on the next lecture in Perimeter's Public Lectures Series