Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Introduction to the causal set approach to quantum gravity and overview of current research in causal set theory
I will discuss the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. The focus will be the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation (based on arXiv:1006.4575). I will show that the LHC has the potential for early discovery of such a long-lived particle if its lifetime (c tau) is between about 0.1 millimeters and 100 meters.
I discuss a model for particle acceleration in the current sheet separating the open and closed field line regions, and crossing the
neutral line region, of a pulsar's magnetosphere, which has substantial kinship to the phenomena observed in planetary magnetospheres within the solar system. Possible applications to gamma ray emission from pulsars are also described.
We introduce a family of variational ansatz states for chains of anyons which optimally exploits the structure of the anyonic Hilbert space. This ansatz is the natural analog of the multi-scale entanglement renormalization ansatz for spin chains. In particular, it has the same interpretation as a coarse-graining procedure and is expected to accurately describe critical systems with algebraically decaying correlations. We numerically investigate the validity of this ansatz using the anyonic golden chain and its relatives as a testbed.