Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Using the de Broglie relation as a foundation for understanding the quirky quantum behaviour of particles.
Learning Outcomes:
• Understanding how a particle in one-dimensional box behaves like a superposition of left- and right-moving de Broglie waves, implying that the particle is moving both left and right simultaneously.
• Understanding the relationship between the intensity of de Broglie waves and the probability of finding the particle at specific locations inside the box.
An introduction to spacetime diagrams – a first step towards understanding Einstein’s special theory of relativity.
Learning Outcomes:
• Newton’s absolute space and time vs. Einstein’s relative space and time.
• Bodies move through both space and time – spacetime diagram “worldlines” show both motions.
• Drawing worldlines for bodies in various states of motion: at rest, moving with various constant velocities, and accelerating.
Drawing spacetime diagrams of simple thought experiments involving sound in air as a warm up exercise for light in vacuum.
Learning Outcomes:
• Deepening our understanding of how to draw and interpret spacetime diagrams.
• Measuring space and time in the same units – a first step towards unifying space and time into “spacetime.”
• Why, for an observer at rest with respect to still air, the speed of sound is independent of the motion of the source of sound.
Continuation of a thought experiment from SR-2 leading up to a derivation of the familiar Doppler shift for sound in air.
Learning Outcomes: The real meaning of Newton’s assumption of absolute (or universal) time; Understanding the Doppler shift for sound in terms of a spacetime diagram; How to derive the (non-relativistic) Doppler shift formula for sound as a consequence of assuming Newton’s universal time.
An experimental introduction to electron spin.
Learning Outcomes:
• To develop the classical understanding of a spinning bar magnet, and how we would expect it to be affected on passing through a Stern-Gerlach apparatus.
• How actual experiments with silver atoms (containing an electron that acts like a tiny spinning bar magnet) give results that are completely different from the above classical expectations.
In the first part of the talk, a brief introduction to general relativity and quantum theory is given. Their independent successes are discussed, as well as the desire and difficulty in merging them, to obtain a unique language to describe the universe. Then, I focus on Loop quantum gravity, a particular approach towards this objective, in which a discrete microscopic structure of spacetime is envisaged.