Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I will present a recent result showing that general relativity admits a dual description in terms of a 3D scale invariant theory. The dual theory was discovered by starting with the basic observation that, fundamentally, all observations can be broken down into local comparisons of spatial configurations. Thus, absolute local spatial size is unobservable. Inspired by this principle of "relativity of size", I will motivate a procedure that allows the refoliation invariance of general relativity to be traded for 3D local scale invariance.
Basic epistemological considerations suggest that the laws of nature should be scale invariant and no fundamental length scale should exist in nature. Indeed, the standard model action contains only two terms that break scale invariance: the Einstein-Hilbert term and the Higgs mass term.
Tamara Davis
The last decade of astrophysics has shown more than ever before that cosmology can teach us about the nuts-and-bolts of basic physics. This has been driven by the discovery of the accelerating universe (dark energy) --- the theories being proposed to explain dark energy often invoke new physics such as brane-worlds arising from fledgling models of quantum-gravity. It has become evident that the large timescales and spatial-scales probed by cosmology allow us to learn about fundamental physics in a way inaccessible to any earth-bound experiment.
I thought I was a good teacher until I discovered my students were just memorizing information rather than learning to understand the material. Who was to blame? The students? The material? I will explain how I came to the agonizing conclusion that the culprit was neither of these. It was my teaching that caused students to fail! I will show how I have adjusted my approach to teaching and how it has improved my students' performance significantly.
I will review some recent advances on the line of deriving quantum field theory from pure quantum information processing. The general idea is that there is only Quantum Theory (without quantization rules), and the whole Physics---including space-time and relativity---is emergent from the processing. And, since Quantum Theory itself is made with purely informational principles, the whole Physics must be reformulated in information-theoretical terms.
Five decades ago, Aharonov and Bohm illustrated the indispensable role of the vector potential in quantum dynamics by showing (theoretically) that scattering electrons around a solenoid, no matter how thin, would give rise to a non-trivial cross section that had a periodic dependence on the product of charge and total magnetic flux. (This periodic dependence is due to the topological nature of the
In this talk I will discuss the applications of the gauge/gravity duality to the strongly coupled quark gluon plasma, focusing in particular on the role of the shear viscosity to entropy ratio.
It has been argued that the lower bound on the shear viscosity to entropy density in strongly coupled plasmas can be understood in terms of microcausality violation in the dual gravitational description.