Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

Thursday Nov 21, 2013

In several approaches
to quantum-gravity, the spectral dimension of spacetime runs from the standard
value of 4 in the infrared (IR) to a smaller value in the ultraviolet (UV).
Describing this running in terms of deformed dispersion relations, I show that
a striking cosmological implication is that that UV behavior leading to 2
spectral dimensions results in an exactly scale-invariant spectrum of vacuum scalar
and tensor fluctuations. I discuss scenarios that break exact scale-invariance

Collection/Series: 
Scientific Areas: 

 

Thursday Nov 21, 2013
Speaker(s): 

There exist evidences that magnetic field in
the vicinity of astrophysical black holes plays an important role. In
particular it is required for explanation of such phenomenon as jet formation.
Study of such problems in all their complexity requires 3D numerical
simulations of the magnetohydrodynamics in a strong gravitational field. Quite
often when dealing with such a complicated problem it is instructive to
consider first its simplifications, which can be treated either analytically,

Collection/Series: 
Scientific Areas: 

 

Wednesday Nov 20, 2013
Speaker(s): 

I discuss a technique - the quantum adversary upper bound - that uses the structure of quantum algorithms to gain insight into the quantum query complexity of Boolean functions. Using this bound, I show that there must exist an algorithm for a certain Boolean formula that uses a constant number of queries. Since the method is non-constructive, it does not give information about the form of the algorithm. After describing the technique and applying it to a class of functions, I will outline quantum algorithms that match the non-constructive bound.

Scientific Areas: 

 

Wednesday Nov 20, 2013
Speaker(s): 

Advances in quantum engineering and material science are enabling new approaches for building systems that behave quantum mechanically on long time scales and large length scales. I will discuss how microwave and optical technologies in particular are leading to new domains of many-body physics, both classical and quantum, using photons and phonons as the constituent particles. Furthermore, I will highlight practical consequences of these advances, including improved force and acceleration sensing, efficient signal transduction, and topologically robust photonic circuits.

Collection/Series: 
Scientific Areas: 

Pages