Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

Thursday Nov 14, 2013
Speaker(s): 

The modelling of gravitational wave sources is of timely interest given the exciting prospect of a first detection of gravitational waves by the new generation of detectors. The motion of a small compact object around a massive black hole deviates from a geodesic due to the action of its own field, giving rise to a self-force and the emission of gravitational waves. The self-force program has recently achieved important results using well-established methods.

Collection/Series: 
Scientific Areas: 

 

Wednesday Nov 13, 2013
Speaker(s): 

TBA

Scientific Areas: 

 

Wednesday Nov 13, 2013
Speaker(s): 

The success of gauge theory descriptions of Nature follows simply, in hindsight, from Lorentz symmetry, quantum mechanics, and the existence of interacting massless particles with spin. Yet, remarkably, the most generic type of massless particle spin has never been seriously examined: Wigner's so-called "continuous spin" particles (CSPs), which have a tower of polarization states carrying all integer or half-integer helicities that mix under boosts.

Collection/Series: 
Scientific Areas: 

 

Tuesday Nov 12, 2013
Speaker(s): 

The standard formulation of quantum mechanics is
operationally asymmetric with respect to time reversal---in the language of
compositions of tests, tests in the past can influence the outcomes of test in
the future but not the other way around. The question of whether this represents
a fundamental asymmetry or it is an artifact of the formulation is not a new
one, but even though various arguments in favor of an inherent symmetry have
been made, no complete time-symmetric formulation expressed in rigorous

Collection/Series: 
Scientific Areas: 

 

Tuesday Nov 12, 2013
Speaker(s): 

I will be discussing
relation between scale and conformal symmetry in unitary Lorentz invariant QFTs in four dimensions.

Collection/Series: 
Scientific Areas: 

Pages