Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
To interface photons with solid-state devices, we investigated the coupling of optically active quantum dots with optical micro- and nano-cavities. Initial experimental progress have led to the unexpected observation of ultra low threshold lasing of a photonic crystal defect mode cavity embedded with only 1 to 3 InAs self-assembled quantum dots as gain medium. Photon correlation measurements confirmed the transition from a thermal light source to a coherent light source.
We have only scratched the surface of the potential for using large-scale structure (LSS) as a probe of fundamental physics/cosmology, i.e., quantitatively, we have only measured a small fraction of a percent of the accessible LSS information. Future measurements will probe dark energy, inflation, dark matter properties, neutrino masses, modifications of gravity, etc. with unprecedented precision.
A standard canonical quantization of general relativity yields a time-independent Schroedinger equation whose solutions are static wavefunctions on configuration space. Naively this is in contradiction with the real world where things do change. Broadly speaking, the problem how to reconcile a theory which contains no concept of time with a changing world is called 'the problem of time'.
Braneworlds are a fascinating way of hiding extra dimensions by confining ourselves to live on a brane. One particular model (Randall-Sundrum) has a link to string theory via living in anti de Sitter space. I'll describe how the ads/cft correspondence has been used to claim that a braneworld black hole would tell us how Hawking radiation back reacts on spacetime, thus solving one of the outstanding problems of quantum gravity - the ultimate fate of an evaporating black hole. I'll review evidence for this conjecture, ending with some recent work that shows it may be problematic.
Motivated by recent mathematical developements in non-commutative Donaldson-Thomas theory, we construct a new statistical mechanicalmodel of crystal melting to count BPS bound states of D0 and D2 branes on a single D6 brane wrapping an arbitrary toric Calabi-Yau threefold. We also discuss the wall crossing phenomena, which are crucial for the proper understanding of the relation between the crystal melting and the topological string theory.
Lecture on Quantum Groups by Lucy Zhang
The world will start to run out of cheap, conventionally produced oil much sooner than most people expect, possibly within the next decade. This talk will discuss the reasoning that leads to that conclusion and the likely consequences if it is correct. It may be possible, with considerable difficulty to substitute other fossil fuels for the missing oil, but if we do that we may do irreparable damage to the Earth’s climate. And even then we would start to run out of all fossil fuels, including coal, probably within this century. Can civilization survive if that happens?
Recent results have shown that quantum computers can approximate the value of a tensor network efficiently. These results have initiated a search for tensor networks which contract to computationally interesting quantities. Topological Lattice Field Theories (TLFTs) are one source of such networks; when defined appropriately, networks arising from TLFTs contract to give topological invariants. In this elementary talk, we will define and classify TLFTs which lead to invariants of surfaces, and sketch out the corresponding quantum algorithm.
Check back for details on the next lecture in Perimeter's Public Lectures Series