Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
It has been known for some time that
a system with a filled band will have an integer quantum Hall conductance equal
to its Chern number, a toplogical index associated with the band. While this is
true for a system in a magnetic field with filled Landau Levels, even a system
in zero external field can exhibit the QHE if its band has a Chern number. I
review this issue and discuss a more recent question of whether a partially
filled Chern band can exhibit the Fractional QHE. I describe the work done with
The
combinatorial problems associated with the counting of black hole states in
loop quantum gravity can be analyzed by using suitable generating functions.
These not only provide very useful tools for exact computations, but can also
be used to perform an statistical analysis of the black hole degeneracy
spectrum, study the interesting substructure found in the entropy of
microscopic black holes and its asymptotic behavior for large horizon areas.
The methods that will be described are relevant for the discussion of the