Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Monday May 11, 2015
Speaker(s): 

In QBism, a quantum state represents an agent's personal degrees of belief regarding the consequences of her actions on any part of her external world. The quantum formalism provides consistency criteria that enable the agent to make better decisions. QBism thus gives a central role to the agent, or user of the theory, and explicitly rejects the ontological model framework introduced by Harrigan and Spekkens. This talk addresses the status of agents and the notion of locality in QBism. Our definition of locality is independent of the assumption of an ontological model.

 

Monday May 11, 2015
Speaker(s): 

One of the most deeply rooted concepts in science is causality: the idea that events in the present are caused by events in the past and, in turn, act as causes for what happens in the future. If an event A is a cause of an effect B, then B cannot be a cause of A.

 

Friday May 08, 2015
Speaker(s): 

In these lectures, we will study the bosonic theory of higher-spin gravity in four dimensions. After discussing the reasons for interest in the theory, we will focus on the equations of motion and their content. We will aim to construct the equations from the ground up in a motivated way. The logical order will differ somewhat from standard introductions. As preliminaries, we will discuss the geometry of spinors and twistors in (anti) de Sitter space, along with various viewpoints on free massless fields with arbitrary spin.

 

Friday May 08, 2015
Speaker(s): 



Collection/Series: 
Scientific Areas: 

 

Friday May 08, 2015
Speaker(s): 

A classical Einstein-Rosen bridge changes the topology of spacetime,allowing (for example) electric field lines to penetrate it. It has recently been suggested that in the bulk of a theory of quantum gravity, the quantum entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the quanta, or a “quantum wormhole”. For this “ER=EPR” correspondence to make sense it then seems necessary for a quantum wormhole to allow (for example) electric field lines to penetrate it.

Collection/Series: 
Scientific Areas: 

 

Thursday May 07, 2015
Speaker(s): 

I propose a quantum gravity model in which the fundamental degrees of freedom are pure information bits for both discrete space-time points and links connecting them. The Hamiltonian is a very simple network model consisting of a ferromagnetic Ising model for space-time vertices and an antiferromagnetic Ising model for the links. As a result of the frustration arising between these two terms, the ground state self-organizes as a new type of low-clustering graph with finite Hausdorff dimension.

Collection/Series: 
Scientific Areas: 

 

Thursday May 07, 2015

The known basic building blocks of matter, the quarks and leptons, come in three generations or flavors.

The masses and interactions of the different flavors show a very hierarchical structure and the origin of these hierarchies remains an unsolved mystery of particle physics. The same hierarchies lead to a very high sensitivity of flavor changing processes to new undiscovered particles even outside the reach of direct searches at particle colliders.

Collection/Series: 
Scientific Areas: 

 

Wednesday May 06, 2015
Speaker(s): 

String Theory LEGOs for Black Holes

Four decades ago, Stephen Hawking posed a paradox about black holes and quantum theory that still challenges the imaginations of theoretical physicists today. One of the most promising approaches to resolving the "information paradox" (the notion that nothing, not even information itself, survives beyond a black hole's point-of-no-return event horizon) is string theory, a part of modern physics that has wiggled its way into the popular consciousness.

Collection/Series: 
Scientific Areas: 

 

Wednesday May 06, 2015
Speaker(s): 

Most of the matter in the Universe is dark; determining the composition and interactions of this dark matter is among the defining challenges in particle physics today. I will briefly summarize the present status of dark matter searches and the case for exploration beyond the WIMP paradigm, particularly “light dark matter” close to but beneath the weak scale. I will define sharp milestones in sensitivity needed to decisively explore the best-motivated light dark matter scenarios, and describe experimental techniques to reach these milestones over the next several years.

Collection/Series: 

Pages