Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Brane Tilings are known to describe the largest known class of SCFT's in 3+1 dimensions. There is a well established formalism to find AdS_5 x SE_5 duals to these SCFT's and to compare results on both sides. This talk extends this formalism to 2+1 dimensional SCFT's, living on the world volume of M2 branes, which are dual to AdS_4 x SE_7 backgrounds of M theory. The SCFT's are quiver gauge theories with 4 supercharges (N=2 in 2+1 dimensions) and Chern Simons (CS) couplings. They admit a moduli space of vacuum configurations which is a CY4 cone over SE_7.
Lecture on Quantum Groups by Lucy Zhang
TBA
An electroweak model in which the masses of the W and Z bosons and the fermions are generated by quantum loop graphs through a symmetry breaking of the vacuum is investigated. The model is based on a regularized quantum field theory in which the quantum loop graphs are finite to all orders of perturbation theory and the massless theory is gauge invariant, Poincaré invariant, and unitary to all orders. The breaking of the electroweak symmetry SUL(2) × UY (1) is achieved without a Higgs particle.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
The standard cosmological framework explains an impressive range of large-scale astrophysical phenomena, but an agreement between its predictions and the properties of the dark matter halos of nearby galaxies has not been established. In this talk, I will highlight some key observables that constrain galaxy structure and some key differences between cosmological predictions and halo properties inferred from these measurements.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
An astrophysical black hole is completely described with just two parameters: its mass and its dimensionless spin. A few dozen black holes have mass estimates, but until recently none had a reliable spin estimate. The first spins have now been measured for black holes in X-ray binaries.
Our universe has a split personality: quantum and relativity. Understanding how the two can coexist, i.e. how our universe can exist, is one of the greatest challenges facing theoretical physicists in the 21st century. Join us for a simple but mind-bending thought experiment that hints at some fascinating new ways of thinking that may be required to unravel this mystery. Could the world be like a hologram?
Suppose we are given two probability distributions on some N-element set. How many samples do we need to test whether the two distributions are close or far from each other in the L_1 norm? This problem known as Statistical Difference has been extensively studied during the last years in the field of property testing. I will describe quantum algorithms for Statistical Difference problem that provide a polynomial speed up in terms of the query complexity compared to the known classical lower bounds.