Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
I show that physical devices that perform observation, prediction, or recollection share an underlying mathematical structure. I call devices with that structure ``inference devices\'\'. I present a set of existence and impossibility results concerning inference devices. These results hold independent of the precise physical laws governing our universe. In a limited sense, the impossibility results establish that Laplace was wrong to claim that even in a classical, non-chaotic universe the future can be unerringly predicted, given sufficient knowledge of the present.
The Lee-Wick model has recently been put forwards as an alternative to supersymmetry for solving the hierarchy problem of particle physics. I will show that, modulo important consistency questions, coupling the Lee-Wick model to cosmology leads to a bouncing universe cosmology with a scale-invariant spectrum of cosmological fluctuations emerging from quantum vacuum fluctuations in the contracting phase.
TBA
TBA
We discuss the possibility that spacetime geometry may be an emergent phenomenon. This idea has been motivated by the Analogue Gravity programme. An \'effective gravitational field\' dominates the kinematics of small perturbations in an Analogue Model. In these models there is no obvious connection between the \'gravitational\' field tensor and the Einstein equations, as the emergent spacetime geometry arises as a consequence of linearising around some classical field. After a brief introduction on this topic, we present our recent contributions to the field.
This course is aimed at advanced undergraduate and beginning graduate students, and is inspired by a book by the same title, written by Padmanabhan. Each session consists of solving one or two pre-determined problems, which is done by a randomly picked student. While the problems introduce various subjects in Astrophysics and Cosmology, they do not serve as replacement for standard courses in these subjects, and are rather aimed at educating students with hands-on analytic/numerical skills to attack new problems.
This course is aimed at advanced undergraduate and beginning graduate students, and is inspired by a book by the same title, written by Padmanabhan. Each session consists of solving one or two pre-determined problems, which is done by a randomly picked student. While the problems introduce various subjects in Astrophysics and Cosmology, they do not serve as replacement for standard courses in these subjects, and are rather aimed at educating students with hands-on analytic/numerical skills to attack new problems.
Our present Core Theory of matter (aka “standard model”) was born in the 1970s, a Golden Age for fundamental physics. To date it has passed every experimental test, extending – by many orders of magnitude – to higher energies, shorter distances, and greater precision than were available in the 1970s. Yet we are not satisfied, because the Core Theory postulates four separate interactions and several different kinds of matter, and its equations are lopsided. In this lecture, Prof.
We analyze how quantum complexity poses bounds to the simulation of quantum systems. While methods as Density Functional Theory (DFT) and the Density Matrix Renormalization Group (DMRG) work very well in practice, essentially nothing on the formal requirements is known. In this talk, we consider these methods from a quantum complexity perspective: First, we discuss DFT which encapsulates the difficulty of solving the Schroedinger equation in a universal functional and show that this functional cannot be efficiently computed unless several complexity classes collapse.
Quantum Field Theory I course taught by Volodya Miransky of the University of Western Ontario