Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Quantum correlations cannot be given any classical explanation that would satisfy Bell's local causality assumption. This quite intriguing feature of quantum theory, known as quantum non-locality, has fascinated physicists for years, and has more recently been proven to have interesting applications in quantum information processing.
To model statistical correlations that violate Bell inequalities (such as singlet state correlations), one must relax at least one of three physically plausible postulates: measurement independence (experimenters can freely choose measurement settings independently of any underlying variables describing the system); no-signalling (underlying marginal distributions for one observer cannot depend on the measurement setting of a distant observer), and determinism (all outcomes can be fully determined by the values of underlying variables).
Time is of philosophical interest as well as the subject of mathematical and scientific research. Even though it is a concept familiar to most, the passage of time remains one of the greatest enigmas of the universe. The philosopher Augustine once said: "What then is time? If no one asks me, I know what it is. If I wish to explain it to him who asks me, I do not know." The concept time indeed cannot be explained in simple terms. Emotions, life, and death - all are related to our interpretation of the irreversible flow of time.
Karim Thebault
The functional Renormalization Group is a continuum method to study quantum field theories in the non-perturbative regime. In Yang-Mills theory, it can be used to relate fully nonperturbative low-order correlation functions in particular gauges to observables such as confinement order parameters. As a special application, we determine the order of the phase transition and the critical temperature for various gauge groups (SU(N), N=3,.,12, Sp(2) and E(7)). This also allows to investigate what determines the order of the deconfinement phase transition.
Shan Gao
Maki Takahashi