Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.
Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.
While the luminosity and mass distributions of quasars
has evolved dramatically with cosmic time, the physical properties of quasars
of a given luminosity are remarkably independent of redshift. I will describe recent results on the spectra
of luminous quasars, the dark matter halos in which they sit, and the
intergalactic medium of their host galaxies, that are essentially
indistinguishable from moderate redshifts to z>6.
We construct in the K matrix formalism concrete examples
of symmetry enriched topological phases, namely intrinsically topological
phases with global symmetries. We focus on the Abelian and non-chiral
topological phases and demonstrate by our examples how the interplay between
the global symmetry and the fusion algebra of the anyons of a topologically
ordered system determines the existence of gapless edge modes protected by the
symmetry and that a (quasi)-group structure can be defined among these phases.
We start with a one-slide review of the Kontsevich-Soibelman
(KS) solution to the wall-crossing problem and then proceed to direct and comprehensive physics counting of BPS states that eventually connects to KS. We also asks what input data is needed for either approaches to produce complete BPS spectra, and this naturally leads to the BPS quiver representation of BPS states and the new notion of quiver invariants.
The
interpretation of events with jets is often ambiguous, especially for the sort
of highly complex events one encounters at the LHC. One often finds that
an event interpreted as signal-like using one choice of jet algorithm and
radius parameter is no longer signal-like with another, even if the two are
very similar. Here we present an extension of the Qjets procedure
designed to account for this ambiguity and assign each plausible interpretation
of an event a weight, so that events which are unambiguously signal-like carry
Check back for details on the next lecture in Perimeter's Public Lectures Series