Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
For N=4 super Yang-Mills theory, in the large-N limit and at strong coupling, Wilson loops can be computed using the AdS/CFT correspondence. In the case of flat Euclidean loops the dual computation consists in finding minimal area surfaces in Euclidean AdS3 space. In such case very few solutions were known. In this talk I will describe an infinite parameter family of minimal area surfaces that can be described analytically using Riemann Theta functions.
We will discuss recent progress in computing quantum corrections to S-matrix and partition function of Pohlmeyer reduction for AdS5 x S5 superstring theory.
We compute three-point functions of single trace operators in planar N = 4 SYM. We consider the limit where one of the operators is much smaller than the other two. We find a precise match between weak and strong coupling in the Frolov-Tseytlin classical limit for a very general class of classical solutions. To achieve this match we clarify the issue of back-reaction and identify precisely which three-point functions are captured by a classical computation.
In this talk I will report on the computation at strong coupling of the AdS contribution to the 3-point correlation function of operators corresponding to classical strings which rotate in the S5. This contribution is universal for all operators which have only SO(6) charges.
The students take turns introducing themselves.