Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The multiscale entanglement renormalization ansatz can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat spacelike boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains.
Entanglement is a paradigmatic example of quantum correlations, a presumed reason for the superior performance of quantum computation and an obvious divider of states and processes into classical and quantum. In the last decade all these notions were challenged. Entanglement does not capture the totality of non-classical behavior. Quantum discord (in its different versions) is a more general measure of quantum correlations. It can be related to the advantage in some tasks like the extraction of work from a Szilrad heat engine using Maxwell's demons with various resources.
Violation of unitarity in black hole evaporation has been puzzling physicist since the seminal work of Hawking in the seventies. Although there are hopes for a resolution of the problem in a full theory of quantum gravity, it has eluded us so far. Even less ambitious efforts considering only quantum corrections beyond the external field approximation have proven hard to attack in 4 dimensions. All these obstacles directed researchers to investigate the black hole evaporation problem in simpler 2-dimensional models.
Hawking's discovery of black holes radiance along with Bekenstein's conjecture of the generalized second law of thermodynamics inspired a conceptually pleasing connection between gravity, thermodynamics and quantum theory. However, the discovery that the spectrum of the radiation is in fact thermal, together with the no-hair theorem, has brought along with it some undesirable consequences, most notably the information loss paradox.
We construct the q-deformed spinfoam vertex amplitude using Chern-Simons theory on the boundary 3-sphere of the 4-simplex. The rigorous definition involves the construction of Vassiliev-Kontsevich invariant for trivalent knot graph. Under the semiclassical asymptotics, the q-deformed spinfoam amplitude reproduce Regge gravity with cosmological constant at nondegenerate critical configurations.