Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Constant mean curvature (uniform K) hypersurfaces extend to future null infinity in asymptotically flat spacetimes. With conformal compactification, the entire hypersurface can be covered by a finite spatial grid, eliminating any need an "outgoing wave" boundary condition or for extrapolation to find gravitational wave amplitudes. I will discuss the asymptotic behavior near future null infinity, how this can be simplified by suitable gauge conditions, and how this determines the physical Bondi energy and momentum of the system.
We construct a class of entangled supersymmetric states which is used as a non-local resource in the CHSH game. This class of super entangled states is more non-local then maximally entangled states if the supersymmetric degrees of freedom are accessible to measurement.
Consequently, we show that the winning probability for the CHSH game is greater than cos2(pi/8) corresponding to an expected value greater than Tsirelson's bound.
Low-temperature phases of strongly-interacting quantum many-body systems can exhibit a range of exotic quantum phenomena, from superconductivity to fractionalized particles. One exciting prospect is that the ground or low-temperature thermal state of an engineered quantum system can function as a quantum computer. The output of the computation can be viewed as a response, or 'susceptibility', to an applied input (say in the form of a magnetic field).
Classical constraints come in various forms: first and second class, irreducible and reducible, regular and irregular, all of which will be illustrated. They can lead to severe complications when classical constraints are quantized. An additional complication involves whether one should quantize first and reduce second or vice versa, which may conflict with the axiom that canonical quantization requires Cartesian coordinates. Most constraint quantization procedures (e.g., Dirac, BRST, Faddeev) run into difficulties with some of these issues and may lead to erroneous results.
I will discuss three ways in which (the string landscape and) eternal inflation is fun: (1) because it motivates revisiting some beautiful, classic calculations; (2) because its global description requires asking novel questions with possible broad ramifications; and (3) because it leads to experimental predictions.
Check back for details on the next lecture in Perimeter's Public Lectures Series