Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
The effective field theory framework yields a systematic treatment of gravitational bound states such as binary systems. Gravitational waves emitted from compact binaries are one of the prime event candidates at direct detection experiments. Due to the multiple scales involved in the binary problem, an effective field theory treatment yields many advantages in perturbative calculations. My talk will review the setup of the effective field theory framework and report on recent progress in gravitational wave phenomenology.
I consider systems that consist of a few hot and a few cold two-level systems and define heat engines as unitaries that extract energy. These unitaries perform logical operations whose complexity depends on both the desired efficiency and the temperature quotient. I show cases where the optimal heat engine solves a hard computational task (e.g. an NP-hard problem) [2]. Heat engines can also drive refrigerators and use the temperature difference between two systems for cooling a third one.
Two-party Bell correlation inequalities (that is, inequalities involving only correlations between dichotomic observables at each site, such as the CHSH inequality) are well-understood: Grothendieck's inequality stipulates that the quantum bias can only be a constant factor larger than the classical bias, and the maximally entangled state is always the most nonlocal resource. In part due to the complex nature of multipartite entanglement, tripartite inequalities are much more unwieldy. In a recent breakthrough result, Perez-Garcia et. al.
At the time of recombination, 400,000 years after the Big Bang, the structure of the dark matter distribution was extremely simple and can be inferred directly from observations of structure in the cosmic microwave background. At this time dark matter particles had small thermal velocities and their distribution deviated from uniformity only through a gaussian field of small density fluctuations with associated motions. Later evolution was driven purely by gravity and so obeyed the collisionless Boltzmann equation.