Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Besides their experimental relevance in condensed matter and quantum information science, quantum spin systems are an interesting playground to study decoherence and quantum entanglement. Random matrices are used since the 50' to model quantum chaotic dynamics and complex quantum systems. I introduce new random matrix models which lead to explicit solutions for some simple open or closed quantum spin systems.
In this talk I will provide evidence supporting the Dolan/Nirschl/Osborn conjecture for the precise form of the amplitude of four-point functions of 1/2-BPS operators in N=4 SYM theory at strong coupling and in the large N limit. I will also discuss the methods that allowed the evaluation of amplitudes involving operators of arbitrary conformal dimension.
Quantum theory can be thought of as a noncommutative generalization of Bayesian probability theory, but for the analogy to be convincing, it should be possible to describe inferences among quantum systems in a manner that is independent of the causal relationship between those systems.
The talk consists of two parts: (1) Quasi-single inflation, where the isocurvature direction has mass of order Hubble parameter. This part is based on 0911.3380 and new results about higher mass, and a sharp turn in trajectory. (2) Multi-stream inflation, where the inflationary trajectory bifurcates. This part is based on 0903.2123, 1006.5021 and a on-going project on calculating the bifurcation probability in a complicated landscape.
We report on our recent progress to investigate materials classes exhibiting d+id superconductivity, where topologically nontrivial pairing phases can emerge. Specifically, motivated by recent experimental progress, we show that graphene doped to the van Hove regime can give rise to a plethora of interesting ordering instabilities such as spin density wave and superconductivity.