Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degrees of freedom in the extended effective field theory of gravity generated by the trace anomaly of massless quantum fields in curved space.
I introduce a general method for constraining the shape of the inflationary potential from Cosmic Microwave Background (CMB) temperature and polarization power spectra. This approach relates the CMB observables to the shape of the inflaton potential via a single source function that is responsible for the observable features in the initial curvature power spectrum.
In this talk I will describe my recent work on the structure of entanglement in field theory from the point of view of mutual information. I will give some basic scaling intuition for the entanglement entropy and then describe how this intuition is better captured by the mutual information. I will also describe a proposal for twist operators that can be used to calculate the mutual information using the replica method. Finally, I will discuss the relevance of my results for holographic duality and entanglement based simulation methods for many body systems.
Even though the security of quantum key distribution has been rigorously proven, most practical schemes can be attacked and broken. These attacks make use of imperfections of the physical devices used for their implementation. Since current security proofs assume that the physical devices' exact and complete specification is known, they do not hold for this scenario. The goal of device-independent quantum key distribution is to show security without making any assumptions about the internal working of the devices.