Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
One of the biggest challenges in physics is to develop accurate and efficient methods that can solve many currently intractable problems in correlated quantum or statistical systems. Tensor-network model/state is drawing more and more attention since it captures the feature of the area law and is absent from the sign problem. The evaluation of the expectation value of the observables can be reduced to the contraction of a tensor-network, which can be done by means of renormalization group method, and this is exactly what tensor renormalization group (TRG) method has done.
Instantons and W-bosons in 5d N=2 Yang-Mills theory arise from a circle compactification of the 6d (2,0) theory as Kaluza-Klein modes and winding self-dual strings, respectively. We study an index which counts BPS instantons with electric charges in Coulomb and symmetric phases. We first prove the existence of unique threshold bound state of U(1) instantons for any instanton number. By studying SU(N) self-dual strings in the Coulomb phase, we find novel momentum-carrying degrees on the worldsheet. The total number of these degrees equals the anomaly coefficient of SU(N) (2,0) theory.
Check back for details on the next lecture in Perimeter's Public Lectures Series