Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Wednesday Apr 23, 2008
Speaker(s): 

The Problem of Time in Quantum Gravity and Cosmology

Collection/Series: 

 

Wednesday Apr 23, 2008
Speaker(s): 

The Problem of Time in Quantum Gravity and Cosmology

Collection/Series: 

 

Wednesday Apr 23, 2008
Speaker(s): 

I will describe antiferromagnets and superconductors near quantum phase transitions. There is a remarkable analogy between their dynamics and the holographic description of Hawking radiation from black holes. I will show how insights from this analogy have shed light on experiments on the cuprate high temperature superconductors.

Collection/Series: 

 

Wednesday Apr 23, 2008
Speaker(s): 

I will show how to construct very general ERG equations, and will use this as the starting point for a discussion of Polchinski\'s equation and its cousins. I will introduce diagrammatics and an associated universal calculus, which will be illustrated with a simple calculation.

 

Tuesday Apr 22, 2008
Speaker(s): 

The dynamics of particles moving in a medium defined by its relativistically invariant stochastic properties is investigated. For this aim, the force exerted on the particles by the medium is defined by a stationary random variable as a function of the proper time of the particles. The equations of motion for a single one-dimensional particle are obtained and numerically solved. A conservation law for the drift momentum of the particle during its random motion is shown.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 22, 2008
Speaker(s): 

We introduce a formalism allowing us to localize a certain class of theories with an infinite number of derivatives (nonlocal), which include effective actions of string field theory. The number of degrees of freedom is finite and the Cauchy problem, Hamiltonian and quantization are all well-defined. As applications, the rolling tachyon of cubic string field theory and some cosmological toy models are considered.

Collection/Series: 
Scientific Areas: 

 

Tuesday Apr 22, 2008
Speaker(s): 

Geometries produced by brane intersections preserving eight supercharges are constructed. Typical examples of such configurations are given by fundamental strings ending on D branes and by brane webs. Consistency conditions of supergravity are shown to impose certain requirements on the locations of the sources, and these restrictions are found to be in a perfect agreement with results of the probe analysis. This agreement serves as a nontrivial test of the duality between open and closed strings. Some applications to AdS/CFT correspondence are also discussed.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 16, 2008
Speaker(s): 

Graphene, a single atomic layer of graphite, was created only a few years ago. It is a remarkable system, whose law energy effective theory has a lot in common with relativistic 2 + 1 dimensional ones. Graphene allows tabletop experiments for observing nonperturbative relativistic phenomena, most notably spontaneous chiral symmetry breaking both in vacuum and in an external magnetic field. The latter is in turn crucial for the dynamics of Quantum Hall effect in this system.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 16, 2008
Speaker(s): 

In this lecture, I will discuss Wilson's picture of renormalization and its relation to the Exact Renormalization Group (ERG). In particular, I will focus on how one can understand, in a physically intuitive way, what it is for a quantum field theory to be nonperturbatively renormalizable.

Pages