Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We show that a baryon asymmetry can be generated by dissipative effects during warm inflation via a supersymmetric two-stage mechanism, where the inflaton is coupled to heavy mediator fields that then decay into light species through B- and CP-violating interactions. In contrast with thermal GUT baryogenesis models, the temperature during inflation is always below the heavy mass threshold, simultaneously suppressing thermal and quantum corrections to the inflaton potential and the production of dangerous GUT relics.
What is everything in the universe made of? What was the universe like billions of years ago?
These are eternal questions that humans have pondered throughout the ages. Today, we are on the verge of potentially making revolutionary breakthroughs in answering them.
I will discuss some work on the collider phenomenology and cosmology of light gravitino dark matter, and will touch on some related issues concerning infrared divergences in charged-particle decay at finite temperature.
Light gravitinos, with mass in the eV to MeV range, are well-motivated in particle physics, but their status as dark-matter candidates is muddled by early-Universe uncertainties.
A little warped space is a truncated slice of AdS5 with a warped metric as per Randall-Sundrum, and energy scales much less than the 4D Planck mass.
Both Tevatron experiments have recently reported an anomalous forward-backward asymmetry in top-antitop production. Their inclusive results are roughly 3 standard deviations larger than the standard model prediction and may be evidence of new physics that couples to the top quark. In this talk, I will present a weakly-coupled light axigluon model (
Although the typical physical system achieves an ordered state at low temperatures, spin liquids stay disordered even in their ground state. In addition to an increasing number of experimental candidates for spin liquids, recent numerical work from Meng, et. al and Yan, et. al. has supplied strong numerical evidence for natural Hamiltonians having spin liquid ground states. Their featureless nature, though, makes learning about these states particularly difficult. In this talk, we explore what variational ansatz can teach us about them.
The dominant production mechanism for Standard Model (SM) Higgs boson is g g → h. However, in certain beyond the SM scenarios, Higgs production
The entanglement spectrum denotes the eigenvalues of the reduced density matrix of a region in the ground state of a many-body system. Given these eigenvalues, one can compute the entanglement entropy of the region, but the full spectrum contains much more information. I will review geometric methods to extract this spectrum for special subregions in lorentz and conformally invariant field theories (and any theory whose universal low energy physics is captured by such a field theory).
In massive gravity the so-far-found black hole solutions on Minkowski space happen to convert horizons into a certain type of singularities. I will discuss whether these singularities can be avoided if space-time is not asymptotically Minkowskian.
Check back for details on the next lecture in Perimeter's Public Lectures Series