Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
A beautiful understanding of the smallness of the neutrino masses may be obtained via the seesaw mechanism, whereby one takes advantage of the key qualitative distinction between the neutrinos and the other fermions: right-handed neutrinos are gauge singlets, and may therefore have large Majorana masses. The standard seesaw mechanism, however, does not address the apparent lack of hierarchy in the neutrino masses compared to the quarks and charged leptons, nor the large leptonic mixing angles compared to the small angles of the CKM matrix.
How did inflation actually happen? Precision measurements of statistical properties of primordial fluctuations generated during inflation offer a direct probe of the physics of inflation. When we calculate statistical properties of primordial fluctuations generated during inflation, we usually assume that the initial state of quantum fluctuations is in a preferred vacuum state called Bunch-Davies vacuum. While there is some motivation for choosing such a state, this is an assumption, and thus needs to be tested by observations.
Electrons in conjugated organic polymers and molecules are strongly correlated since most of these systems are quasi one-dimensional. Experimental evidences include existence of two photons below one photon state, observation of negative spin densities in polyene radicals and qualitatively different behavior of optical gaps in polyenes and closely related symmetric cynanine dyes in the thermodynamic limiy. In this talk, I will introduce the model Hamiltonians for the electron states in conjugated systems.
Recent progress in the quantization of nonrenormalizable scalar fields has found that a suitable non-classical modification of the ground state wave function leads to a result that eliminates term-by-term divergences that arise in a conventional perturbation analysis. After a brief review of both the scalar field story and the affine quantum gravity program, examination of the procedures used in the latter surprisingly shows an analogous formulation which already implies that affine quantum gravity is not plagued by divergences that arise in a standard perturbation study.
When two independent analog signals, $X$ and $Y$ are added together giving $Z=X+Y$, the entropy of $Z$, $H(Z)$, is not a simple function of the entropies $H(X)$ and $H(Y)$, but rather depends on the details of $X$ and $Y$'s distributions. Nevertheless, the entropy power inequality (EPI), which states that $e^{2H(Z)} \geq e^{2H(X)} + e^{2H(Y)}$, gives a very tight restriction on the entropy of $Z$.
In this talk I provide a model where the late time acceleration of the universe emerges from a BCS-like condensation of sterile neutrinos. This scenario can be naturally accommodated by general relativity covariantly coupled to sterile neutrinos, where the neutrinos act like an "aether" field. We show that when active neutrinos couple to the neutrino condensate, they oscillate at a rate proportional to the dark energy density. As a result, the oscillation of neutrinos and dark energy are tied in with the same mechanism.
The minimal dimension of the Hilbert space that hosts states of an entangled pair of photons can be extremely high. The process of spontaneous parametric down-conversion (SPDC) is a possible way of producing highly entangled photon pairs, in both the spatial and temporal parts of the wave function. However, the most common approximations that are used in the analytical treatment of SPDC hinder the possibility of noticing further structures of the single joint modes.
We propose a new method of unifying gravity and the Yang-Mills fields by introducing a spin-foam model. We realize a unification between an SU(2) Yang-Mills interaction and 3D general relativity by considering a constrained Spin(4) ~SO(4) Plebanski action.
The pseudo-conformal scenario is an alternative to inflation in which the early universe is approximately described by a conformal field theory in Minkowski space. Crucially, the cosmological background spontaneously breaks the flat space so(4,2) conformal algebra down to its so(4,1) de Sitter subalgebra, causing conformal-weight-0 fields to acquire a scale invariant spectrum of perturbations. This framework is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics.
We comment on a certain partially reduced phase space quantisation of general relativity conformally coupled to a scalar field, and its extension to standard model matter fields. The partially reduced phase space is reached by trading the Hamiltonian constraint for the generator of local conformal transformations on all phase space variables, inspired by the ideas of shape dynamics, and constructing conformally invariant connection variables. Furthermore, we review this trading of symmetries from the gauge fixing/unfixing perspective, which is dual to the concept of a linking theory.
Check back for details on the next lecture in Perimeter's Public Lectures Series