Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Thursday May 03, 2012
Speaker(s): 

The quantum spin liquid state is a prime example of an emergent phenomenon. Theory predicts that new particles such as spinons and gauge fields may emerge at low temperatures. However, for many years there have not been any examples in nature. The situation has changed in recent years in that a number of candidate materials have been discovered which may exhibit these exotic phenomena.

 

Wednesday May 02, 2012
Speaker(s): 

Joint work with Earl Campbell (FU-Berlin) and Hussain Anwar (UCL)   Magic state distillation is a key component of some high-threshold schemes for fault-tolerant quantum computation [1], [2]. Proposed by Bravyi and Kitaev [3] (and implicitly by Knill [4]), and improved by Reichardt [4], Magic State Distillation is a method to broaden the vocabulary of a fault-tolerant computational model, from a limited set of gates (e.g.

Scientific Areas: 

 

Wednesday May 02, 2012
Speaker(s): 

Majorana disappeared under mysterious circumstances in 1938 and the particle that bears his name remains elusive to experiments. There is growing interests in realizing the Majorana bound state in the Laboratory because it is expected to possess unusual properties such as non-abelian statistics. I shall discuss various proposals to produce  Majorana bound states and the associated topological superconductors which support them.

Collection/Series: 

 

Tuesday May 01, 2012
Speaker(s): 

It is sometimes pointed out as a curiosity that the state space of quantum theory and actual physical space seem related in a surprising way: not only is space three-dimensional and Euclidean, but so is the Bloch ball which describes quantum two-level systems. In the talk, I report on joint work with Lluis Masanes, where we show how this observation can be turned into a mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (dropping quantum theory and complex amplitudes altogether).

Collection/Series: 
Scientific Areas: 

 

Tuesday May 01, 2012
Speaker(s): 

We review the notion of a quantum state of the universe and its role in fundamental cosmology. Then we discuss recent work which points towards a profound connection, at the level of the quantum state, between (asymptotic) Euclidean AdS spaces and Lorentzian de Sitter spaces. This gives a new framework in which (a mild generalization of) AdS/CFT can be applied to inflationary cosmology.

Collection/Series: 
Scientific Areas: 

 

Monday Apr 30, 2012
Speaker(s): 

I will describe the tight connection between cosmic baryon number and cosmic magnetic fields, and also some recent work on chiral magnetic effects in cosmology.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 25, 2012
Speaker(s): 

I will review the construction of lattice theories which maintain one or more exact supersymmetries for non zero lattice spacing concentrating in particular on the case of N=4 super Yang-Mills. Such lattice theories may be studied using Monte Carlo techniques borrowed from lattice QCD and can be used to explore issues in holography. In three dimensions the same constructions can be used to formulate a topological theory of gravity which we argue is equivalent to Witten's Chern Simons theory.

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 25, 2012
Speaker(s): 

The ground state phase of spin-1/2 J1-J2 antiferromagnetic Heisenberg model on square lattice in the maximally frustrated regime (J2 ~ 0.5J1) has been debated for decades. Here we study this model by using a recently proposed novel numerical method - the cluster update algorithm for tensor product states (TPSs). The ground state energies at finite sizes and in the thermodynamic limit (with finite size scaling) are in good agreement with the state of art exact diagonalization study, and

Collection/Series: 
Scientific Areas: 

 

Wednesday Apr 25, 2012
Speaker(s): 

There has been some significant recent progress on the long-standing problem of identifying the conditions under which equilibrium statistical mechanics can arise from an exact quantum mechanical treatment of the dynamics. I will give an overview of this progress, describing in particular how random matrix models and the associated concentration of measure phenomena imply that equilibration is generic even for the closed system evolution of pure quantum states.

Collection/Series: 

Pages