Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities.  Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

  

 

Thursday May 03, 2012
Speaker(s): 

Charged colloidal particles present a controllable system for study a host of condensed matter/many body problems such as crystallization. 2D crystals are invariably hexagonal. Hexagons perfectly tile a flat plane but a soccer ball requires exactly 12 pentagons dispersed among the hexagons on its curved surface. Pentagons and hexagons are positive and negative topological charges, disclinations, sources for positive and negative curvature.

 

Thursday May 03, 2012
Speaker(s): 

I will discuss string cosmology and the dynamics of multiple scalar fields in potentials that can become negative, and their features as (Early) Dark Energy models. The point of departure is the ``String Axiverse'', a scenario that motivates the existence of cosmologically light axion fields as a generic consequence of string theory. These fields can constitute part of the Dark Matter, suppressing structure formation in a manner similar to massive neutrinos. Future observations will constrain their existence to percent level accuracy.

Collection/Series: 
Scientific Areas: 

 

Thursday May 03, 2012
Speaker(s): 

Recent experiments have demonstrated that it is possible to create a synthetic magnetic field for neutral atoms in optical lattices using two-photon (Raman) processes. Motivated by exploring the interplay of such artificial magnetic fields and strong correlations for bosons, we have studied the Bose Hubbard model in the presence of pi-flux per plaquette. Using a variety of techniques, this model is shown to support a remarkable chiral Mott insulator phase on a 2-leg ladder. This state is a fully gapped insulator with staggered loop currents.

 

Thursday May 03, 2012
Speaker(s): 

We used time-of-flight inelastic neutron scattering to measure the excitation spectra from field-polarized states of exotic frustrated magnets. A knowledge of these spin-wave excitations in various directions in reciprocal space allows a robust determination of exchange parameters in suitable model Hamiltonians.  We have taken this approach with two pyrochlores, Er2Ti2O7 and Yb2Ti2O7, whose magnetic properties have until this point been somewhat puzzling.  The model we use is an effective spin-1/2 exchange Hamiltonian that incorporates the full anisotropy allowed by symmetry at the rare ea

 

Thursday May 03, 2012
Speaker(s): 

The quantum spin liquid state is a prime example of an emergent phenomenon. Theory predicts that new particles such as spinons and gauge fields may emerge at low temperatures. However, for many years there have not been any examples in nature. The situation has changed in recent years in that a number of candidate materials have been discovered which may exhibit these exotic phenomena.

 

Wednesday May 02, 2012
Speaker(s): 

Joint work with Earl Campbell (FU-Berlin) and Hussain Anwar (UCL)   Magic state distillation is a key component of some high-threshold schemes for fault-tolerant quantum computation [1], [2]. Proposed by Bravyi and Kitaev [3] (and implicitly by Knill [4]), and improved by Reichardt [4], Magic State Distillation is a method to broaden the vocabulary of a fault-tolerant computational model, from a limited set of gates (e.g.

Scientific Areas: 

 

Wednesday May 02, 2012
Speaker(s): 

Majorana disappeared under mysterious circumstances in 1938 and the particle that bears his name remains elusive to experiments. There is growing interests in realizing the Majorana bound state in the Laboratory because it is expected to possess unusual properties such as non-abelian statistics. I shall discuss various proposals to produce  Majorana bound states and the associated topological superconductors which support them.

Collection/Series: 

 

Tuesday May 01, 2012
Speaker(s): 

It is sometimes pointed out as a curiosity that the state space of quantum theory and actual physical space seem related in a surprising way: not only is space three-dimensional and Euclidean, but so is the Bloch ball which describes quantum two-level systems. In the talk, I report on joint work with Lluis Masanes, where we show how this observation can be turned into a mathematical result: suppose that physics takes place in d spatial dimensions, and that some events happen probabilistically (dropping quantum theory and complex amplitudes altogether).

Collection/Series: 
Scientific Areas: 

 

Tuesday May 01, 2012
Speaker(s): 

We review the notion of a quantum state of the universe and its role in fundamental cosmology. Then we discuss recent work which points towards a profound connection, at the level of the quantum state, between (asymptotic) Euclidean AdS spaces and Lorentzian de Sitter spaces. This gives a new framework in which (a mild generalization of) AdS/CFT can be applied to inflationary cosmology.

Collection/Series: 
Scientific Areas: 

Pages