Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
In this talk I will describe my recent work on the structure of entanglement in field theory from the point of view of mutual information. I will give some basic scaling intuition for the entanglement entropy and then describe how this intuition is better captured by the mutual information. I will also describe a proposal for twist operators that can be used to calculate the mutual information using the replica method. Finally, I will discuss the relevance of my results for holographic duality and entanglement based simulation methods for many body systems.
Even though the security of quantum key distribution has been rigorously proven, most practical schemes can be attacked and broken. These attacks make use of imperfections of the physical devices used for their implementation. Since current security proofs assume that the physical devices' exact and complete specification is known, they do not hold for this scenario. The goal of device-independent quantum key distribution is to show security without making any assumptions about the internal working of the devices.
We formulate a numerical procedure to calculate Hawking radiation during non-equilibrium black hole formation. The procedure is applied to a static string in thermal AdS and it is shown that for an arbitrary initial state, the final state is an equilibrated heavy quark string. The fluctuations in the quark string are transmitted from the horizon to the boundary leading to Brownian motion in the boundary theory.
Introduction to the causal set approach to quantum gravity and overview of current research in causal set theory
Introduction to the causal set approach to quantum gravity and overview of current research in causal set theory
The Exact Renormalization Group (ERG) is a technique which can be fruitfully applied to systems with local interactions that exhibit a large number of degrees of freedom per correlation length. In the first part of the talk I will give a very general overview of the ERG, focussing on its applications in quantum field theory (QFT) and critical phenomena. In the second part I will discuss how a particular extension of the formalism suggests a new understanding of correlation functions in QFTs, in general, and gauge theories in particular.
Check back for details on the next lecture in Perimeter's Public Lectures Series