Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
This course provides a thorough introduction to the bosonic string based on the Polyakov path integral and conformal field theory. We introduce central ideas of string theory, the tools of conformal field theory, the Polyakov path integral, and the covariant quantization of the string. We discuss string interactions and cover the tree-level and one loop amplitudes. More advanced topics such as T-duality and D-branes will be taught as part of the course. The course is geared for M.Sc. and Ph.D. students enrolled in Collaborative Ph.D. Program in Theoretical Physics.
In this talk I will review how ideas borrowed from perturbative Quantum Gravity and Effective Field Theory (EFT) in Particle Physics can be applied to problems in General Relativity (GR), such as calculating gravitational wave emission by inspiralling spinning binary systems, including finite size effects and absorption. I will discuss in somewhat more detail how to account for dissipative effects, where the GR/EFT duality is used to predict the power loss due to absorption in the dynamics of binary spinning Black Holes.
We derive a universal upper bound on the weight of the lowest primary operator in any two-dimensional conformal field theory with a given central charge. Translated into gravitational language using the AdS/CFT dictionary, our result proves rigorously that the lightest massive state in any theory of 3D gravity and matter with negative cosmological constant can be no heavier than a particular function the cosmological constant and the Planck scale. For a large AdS space, the lower bound approaches the mass of the lightest BTZ black hole.
Cosmology, in particular applying the physics of elementary particles to the extremely hot and violent conditions of the early universe, and exploring deep questions about the big bang, the fate of our universe, and the hope for intelligent life (here or elsewhere)
Fundamental interactions between elementary particles, using deep ideas involving mathematical symmetry for restoring unity to the fundamental laws of nature (strong and weak nuclear forces, electromagnetism and gravity).
Condensed matter systems at ultra low-temperature that show purely quantum phenomena – even on big scales (superfluidity, superconductivity, Bose-Einstein condensates); measurements in the quantum world; probing the foundations of quantum theory.
Many aspects of geometry, black holes, novel views on the evolution of the universe (was there something before the Big Bang?), the interplay and unification of general relativity and quantum physics, and science of consciousness.
Big Bang cosmology, inflationary growth of the universe, seeds for the formation of galaxies and large-scale structure, dark energy and dark matter, and also “quasicrystals” - a new phase of solid matter with impossible symmetries.
String theory, the high energy frontier of elementary particle physics, grand unifications into a single framework, mathematical beauty and supersymmetries, and uncovering the quantum structures of space and time.
Check back for details on the next lecture in Perimeter's Public Lectures Series