Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
Adiabatic quantum optimization has attracted a lot of attention because small scale simulations gave hope that it would allow to solve NP-complete problems efficiently. Later, negative results proved the existence of specifically designed hard instances where adiabatic optimization requires exponential time. In spite of this, there was still hope that this would not happen for random instances of NP-complete problems.
According to hidden-variables theories, quantum physics is a special 'equilibrium' case of a much wider 'nonequilibrium' physics. We describe the search for that wider physics in a cosmological context. The hypothesis that the universe began in a state of quantum nonequilibrium is shown to have observable consequences. In de Broglie-Bohm theory on expanding space, relaxation to quantum equilibrium is shown to be suppressed for field modes whose quantum time evolution satisfies a certain inequality, resulting in a 'freezing' of early nonequilibrium for these particular modes.
Complete classification of topological insulators (including, e.g., the quantum Hall effect and the quantum spin Hall systems), and superconductors (including, e.g., chiral p-wave SC and the B-phase of 3He). An interacting bosonic model that realizes a topological superconducting phase in three spatial dimensions.
TBA
We study the sub-structure of heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region.
Check back for details on the next lecture in Perimeter's Public Lectures Series