Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
This talk will deal with a new connection formulation for higher-dimensional (Super)gravity theories and its applications. We will start by reviewing the basic ideas of loop quantum gravity. Next, the derivation of the new connection formulation will be discussed and it will be shown that the quantization methods developed in the context of loop quantum gravity apply. We comment on applications of the framework, focusing on making contact with String theory.
Cold atomic gases in optical lattices are emerging as excellent laboratories for testing models of strongly interacting particles in
condensed matter physics. It is possible to tune the interactions,
dimensionality, spin, statistics and a host of other variables in a
completely disorder free environment. This has opened up unique possibilities of mapping out phase diagrams of quantum models and
observing quantum phase transitions for the very first time. I will
discuss some of the challenges in this field.
Dualities in physics are well known for their conceptual depth and quantitative predictive power in contexts where perturbation theory is unreliable. They are also remarkable for the staggering arrange of physical problems that exploit them, ranging from the study of confinement and unconventional phases in statistical mechanics and field theory to the unification of the string theory landscape.
Critical theories of gravity are certain higher derivative theories in which parameters are so tuned as to eliminate massive excitations for the spin-2 field. Asymptotically AdS black hole entropy in these theories works out to be zero. We show that such theories arise naturally on the boundary of AdS in the form of counterterms. Such counterterms are derived by demanding cutoff independence of the Euclidean onshell action and black hole entropy.
We propose models of symmetric WIMP dark matter in which dark matter annihilations generate the baryon asymmetry. We call this mechanism "WIMPy baryogenesis". This provides a dynamical connection between the late-time abundances of both dark matter and baryons. We construct explicit models of leptogenesis and baryogenesis at the weak scale, and find the "miraculous" result that, for order one couplings and weak scale masses for any new fields, the baryon asymmetry and dark matter relic density from WIMPy baryogenesis match the observed values.
General relativity is a covariant theory of two transverse, traceless graviton degrees of freedom. According to a theorem of Hojman, Kuchar, and Teitelboim, modifications of general relativity must either introduce new degrees of freedom or violate the principle of general covariance. In my talk, I will discuss modifications of general relativity that retain the same number of gravitational degrees of freedom, and therefore explicitly break general covariance. Motivated by cosmology, the modifications of interest maintain spatial covariance.