Since 2002 Perimeter Institute has been recording seminars, conference talks, and public outreach events using video cameras installed in our lecture theatres. Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. Recordings of events in these areas are all available On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA). PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org.
We introduce a family of variational ansatz states for chains of anyons which optimally exploits the structure of the anyonic Hilbert space. This ansatz is the natural analog of the multi-scale entanglement renormalization ansatz for spin chains. In particular, it has the same interpretation as a coarse-graining procedure and is expected to accurately describe critical systems with algebraically decaying correlations. We numerically investigate the validity of this ansatz using the anyonic golden chain and its relatives as a testbed.
The AdS/CFT correspondence relates large-N, planar quantum gauge theories to string theory on the Anti-de-Sitter background. I will discuss exact results in field theories with AdS duals, which can be obtained with the help of diagram resummations, mapping to quantum spin chains and two-dimensional sigma-models.
I revisit an example of stronger-than-quantum correlations that was discovered by Ernst Specker in 1960. The example was introduced as a parable wherein an over-protective seer sets a simple prediction task to his daughter's suitors. The challenge cannot be met because the seer asks the suitors for a noncontextual assignment of values but measures a system for which the statistics are inconsistent with such an assignment. I will show how by generalizing these sorts of correlations, one is led naturally to some well-known proofs of nonlocality and contextuality, and to some new ones.
The entropy outside of an event horizon can never decrease if one includes a term proportional to the horizon area. For a long time, this astonishing result had only been shown for quantum fields that are in an approximately steady state. I will describe a new proof of the generalized second law for arbitrary slices of semiclassical, rapidly-changing horizons. I will start with the simplest case, Rindler horizons, and then describe how the proof can be adapted to other cases (black holes, de Sitter, etc.) by restricting the field algebra to the horizon.